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CHAPTER

ONE

LEARN THE BASICS

This chapter introduces the basic conception of rotated object detection and the framework of MMRotate, and provides
links to detailed tutorials about MMRotate.

1.1 What is rotated object detection

1.1.1 Problem definition

Benefiting from the vigorous development of general object detection, most current rotated object detection models are
based on classic general object detector. With the development of detection tasks, horizontal boxes have been unable
to meet the needs of researchers in some subdivisions. We call it rotating object detection by redefining the object
representation and increasing the number of regression degrees of freedom to achieve rotated rectangle, quadrilateral,
and even arbitrary shape detection. Performing high-precision rotated object detection more efficiently has become a
current research hotspot. The following areas are where rotated object detection has been applied or has great potential:
face recognition, scene text, remote sensing, self-driving, medical, robotic grasping, etc.

1.1.2 What is rotated box

The most notable difference between rotated object detection and generic detection is the replacement of horizontal
box annotations with rotated box annotations. They are defined as follows:

• Horizontal box: A rectangle with the width along the x-axis and height along the y-axis. Usually, it can be
represented by the coordinates of 2 diagonal vertices (x_i, y_i) (i = 1, 2), or it can be represented by the
coordinates of the center point and the height and width (x_center, y_center, height, width).

• Rotated box: It is obtained by rotating the horizontal box around the center point by an angle, and the definition
method of its rotated box is obtained by adding a radian parameter (x_center, y_center, height, width,
theta), where theta = angle * pi / 180. The unit of theta is rad. When the rotation angle is a multiple
of 90°, the rotated box degenerates into a horizontal box. The rotated box annotations exported by the annotation
software are usually polygons, which need to be converted to the rotated box definition method before training.

Note: In MMRotate, angle parameters are in radians.
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1.1.3 Rotation direction

A rotated box can be obtained by rotating a horizontal box clockwise or counterclockwise around its center point. The
rotation direction is closely related to the choice of the coordinate system. The image space adopts the right-handed
coordinate system (y, x), where y is up->down and x is left->right. There are two opposite directions of rotation:

• ClockwiseCW

Schematic of CW

0-------------------> x (0 rad)
| A-------------B
| | |
| | box h
| | angle=0 |
| D------w------C
v
y (pi/2 rad)

Rotation matrix of CW (︂
cos𝛼 − sin𝛼
sin𝛼 cos𝛼

)︂
Rotation transformation of CW
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𝑦𝐴

)︂
=
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𝑥𝑐𝑒𝑛𝑡𝑒𝑟

𝑦𝑐𝑒𝑛𝑡𝑒𝑟

)︂
+

(︂
cos𝛼 − sin𝛼
sin𝛼 cos𝛼

)︂(︂
−0.5𝑤
−0.5ℎ

)︂
=

(︂
𝑥𝑐𝑒𝑛𝑡𝑒𝑟 − 0.5𝑤 cos𝛼+ 0.5ℎ sin𝛼
𝑦𝑐𝑒𝑛𝑡𝑒𝑟 − 0.5𝑤 sin𝛼− 0.5ℎ cos𝛼

)︂
• CounterclockwiseCCW

Schematic of CCW
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| A-------------B
| | |
| | box h
| | angle=0 |
| D------w------C
v
y (-pi/2 rad)

Rotation matrix of CCW (︂
cos𝛼 sin𝛼
− sin𝛼 cos𝛼

)︂
Rotation transformation of CCW
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)︂
=
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𝑥𝑐𝑒𝑛𝑡𝑒𝑟

𝑦𝑐𝑒𝑛𝑡𝑒𝑟

)︂
+

(︂
cos𝛼 sin𝛼
− sin𝛼 cos𝛼

)︂(︂
−0.5𝑤
−0.5ℎ
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(︂
𝑥𝑐𝑒𝑛𝑡𝑒𝑟 − 0.5𝑤 cos𝛼− 0.5ℎ sin𝛼
𝑦𝑐𝑒𝑛𝑡𝑒𝑟 + 0.5𝑤 sin𝛼− 0.5ℎ cos𝛼

)︂
The operators that can set the rotation direction in MMCV are:
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• box_iou_rotated (Defaults to CW)

• nms_rotated (Defaults to CW)

• RoIAlignRotated (Defaults to CCW)

• RiRoIAlignRotated (Defaults to CCW).

Note: In MMRotate, the rotation direction of the rotated boxes is CW.

1.1.4 Definition of rotated box

Due to the difference in the definition range of theta, the following three definitions of the rotated box gradually
emerge in rotated object detection:

• 𝐷𝑜𝑐′ : OpenCV Definition, angle(0, 90°], theta(0, pi / 2], The angle between the height of the rectangle
and the positive semi-axis of x is a positive acute angle. This definition comes from the cv2.minAreaRect
function in OpenCV, which returns an angle in the range (0, 90°].

• 𝐷𝑙𝑒135: Long Edge Definition (135°)angle[-45°, 135°), theta[-pi / 4, 3 * pi / 4) and height >
width.

• 𝐷𝑙𝑒90: Long Edge Definition (90°)angle[-90°, 90°), theta[-pi / 2, pi / 2) and height > width.

The conversion relationship between the three definitions is not involved in MMRotate, so we will not introduce it much
more. Refer to the below blog to dive deeper.

Note: MMRotate supports the above three definitions of rotated box simultaneously, which can be flexibly switched
through the configuration file.

It should be noted that if the OpenCV version is less than 4.5.1, the angle range of cv2.minAreaRect is between
[-90°, 0°). Reference In order to facilitate the distinction, the old version of the OpenCV definition is denoted as
𝐷𝑜𝑐.

• 𝐷𝑜𝑐′ : OpenCV definition, opencv>=4.5.1, angle(0, 90°], theta(0, pi / 2].

• 𝐷𝑜𝑐 : Old OpenCV definition, opencv<4.5.1, angle[-90°, 0°), theta[-pi / 2, 0).

The conversion relationship between the two OpenCV definitions is as follows:

𝐷𝑜𝑐′ (ℎ𝑜𝑐′ , 𝑤𝑜𝑐′ , 𝜃𝑜𝑐′) =

{︃
𝐷𝑜𝑐 (𝑤𝑜𝑐, ℎ𝑜𝑐, 𝜃𝑜𝑐 + 𝜋/2) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐷𝑜𝑐 (ℎ𝑜𝑐, 𝑤𝑜𝑐, 𝜃𝑜𝑐 + 𝜋) , 𝜃𝑜𝑐 = −𝜋/2

𝐷𝑜𝑐 (ℎ𝑜𝑐, 𝑤𝑜𝑐, 𝜃𝑜𝑐) =

{︃
𝐷𝑜𝑐′ (𝑤𝑜𝑐′ , ℎ𝑜𝑐′ , 𝜃𝑜𝑐′ − 𝜋/2) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐷𝑜𝑐′ (ℎ𝑜𝑐′ , 𝑤𝑜𝑐′ , 𝜃𝑜𝑐′ − 𝜋) , 𝜃𝑜𝑐′ = 𝜋/2

Note: Regardless of the OpenCV version you are using, MMRotate will convert the theta of the OpenCV definition
to (0, pi / 2].
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1.1.5 Evaluation

The code for evaluating mAP involves the calculation of IoU. We can directly calculate the IoU of the rotated boxes
or convert the rotated boxes to a polygons and then calculate the polygons IoU (DOTA online evaluation uses the
calculation of polygons IoU).

1.2 What is MMRotate

MMRotate is a toolbox that provides a framework for unified implementation and evaluation of rotated object detection,
and below is its whole framework:

MMRotate consists of 4 main parts, datasets, models, core and apis.

• datasets is for data loading and data augmentation. In this part, we support various datasets for rotated object
detection algorithms, useful data augmentation transforms in pipelines for pre-processing image.

• models contains models and loss functions.

• core provides evaluation tools for model training and evaluation.

• apis provides high-level APIs for models training, testing, and inference.

The module design of MMRotate is as follows:

The following points need to be noted due to different definitions of rotated box:

• Loading annotations

• Data augmentation

• Assigning samples

• Evaluation

1.3 How to Use this Guide

Here is a detailed step-by-step guide to learn more about MMRotate:

1. For installation instructions, please see install.

2. get_started is for the basic usage of MMRotate.

3. Refer to the below tutorials to dive deeper:

• Config

• Customize Dataset

• Customize Model

• Customize Runtime
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CHAPTER

TWO

PREREQUISITES

• Linux & Windows

• Python 3.7+

• PyTorch 1.6+

• CUDA 9.2+

• GCC 5+

• mmcv 1.4.5+

• mmdet 2.19.0+

Compatible MMCV, MMClassification and MMDetection versions are shown as below. Please install the correct
version of them to avoid installation issues.

Note: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both
installed, there will be ModuleNotFoundError.
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CHAPTER

THREE

INSTALLATION

3.1 Prepare environment

1. Create a conda virtual environment and activate it.

conda create -n openmmlab python=3.7 -y
conda activate openmmlab

2. Install PyTorch and torchvision following the official instructions, e.g.,

conda install pytorch torchvision -c pytorch

Note: Make sure that your compilation CUDA version and runtime CUDA version match. You can check the
supported CUDA version for precompiled packages on the PyTorch website.

E.g If you have CUDA 10.1 installed under /usr/local/cuda and would like to install PyTorch 1.7, you need
to install the prebuilt PyTorch with CUDA 10.1.

conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.1 -c pytorch

3.2 Install MMRotate

It is recommended to install MMRotate with MIM, which automatically handle the dependencies of OpenMMLab
projects, including mmcv and other python packages.

pip install openmim
mim install mmrotate

Or you can still install MMRotate manually:

1. Install mmcv-full.

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/
→˓{torch_version}/index.html

Please replace {cu_version} and {torch_version} in the url to your desired one. For example, to install the
latest mmcv-full with CUDA 11.0 and PyTorch 1.7.0, use the following command:

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/
→˓index.html
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See here for different versions of MMCV compatible to different PyTorch and CUDA versions.

Optionally you can compile mmcv from source if you need to develop both mmcv and mmrotate. Refer to the
guide for details.

2. Install MMDetection.

You can simply install mmdetection with the following command:

pip install mmdet

3. Install MMRotate.

You can simply install mmrotate with the following command:

pip install mmrotate

or clone the repository and then install it:

git clone https://github.com/open-mmlab/mmrotate.git
cd mmrotate
pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"

Note:

a. When specifying -e or develop, MMRotate is installed on dev mode , any local modifications made to the code
will take effect without reinstallation.

b. If you would like to use opencv-python-headless instead of opencv-python, you can install it before installing
MMCV.

c. Some dependencies are optional. Simply running pip install -v -e . will only install the minimum runtime
requirements. To use optional dependencies like albumentations and imagecorruptions either install them man-
ually with pip install -r requirements/optional.txt or specify desired extras when calling pip (e.g. pip
install -v -e .[optional]). Valid keys for the extras field are: all, tests, build, and optional.

3.3 Another option: Docker Image

We provide a Dockerfile to build an image. Ensure that you are using docker version >=19.03.

# build an image with PyTorch 1.6, CUDA 10.1
docker build -t mmrotate docker/

Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmrotate/data mmrotate
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3.4 A from-scratch setup script

Assuming that you already have CUDA 10.1 installed, here is a full script for setting up MMDetection with conda.

conda create -n openmmlab python=3.7 -y
conda activate openmmlab

conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.1 -c pytorch

# install the latest mmcv
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.0/index.
→˓html

# install mmdetection
pip install mmdet

# install mmrotate
git clone https://github.com/open-mmlab/mmrotate.git
cd mmrotate
pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"

3.4. A from-scratch setup script 9
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CHAPTER

FOUR

VERIFICATION

To verify whether MMRotate is installed correctly, we can run the demo code and inference a demo image.

Please refer to demo for more details. The demo code is supposed to run successfully upon you finish the installation.

11
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CHAPTER

FIVE

DATASET PREPARATION

Please refer to data preparation for dataset preparation.

13
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CHAPTER

SIX

TEST A MODEL

• single GPU

• single node multiple GPU

• multiple node

You can use the following commands to infer a dataset.

# single-gpu
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

# multi-gpu
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [optional arguments]

# multi-node in slurm environment
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments] --launcher␣
→˓slurm

Examples:

Inference RotatedRetinaNet on DOTA-1.0 dataset. (Please change the data_root firstly.)

python ./tools/test.py \
configs/rotated_retinanet/rotated_retinanet_obb_r50_fpn_1x_dota_le90.py \
checkpoints/SOME_CHECKPOINT.pth --eval mAP

You can also visualize the results.

python ./tools/test.py \
configs/rotated_retinanet/rotated_retinanet_obb_r50_fpn_1x_dota_le90.py \
checkpoints/SOME_CHECKPOINT.pth \
--show-dir work_dirs/vis

Further, you can also generate compressed files for online submission.

python ./tools/test.py \
configs/rotated_retinanet/rotated_retinanet_obb_r50_fpn_1x_dota_le90.py \
checkpoints/SOME_CHECKPOINT.pth 1 --format-only \
--eval-options submission_dir=work_dirs/Task1_results

15
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CHAPTER

SEVEN

TRAIN A MODEL

7.1 Train with a single GPU

python tools/train.py ${CONFIG_FILE} [optional arguments]

If you want to specify the working directory in the command, you can add an argument --work_dir
${YOUR_WORK_DIR}.

7.2 Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments are:

• --no-validate (not suggested): By default, the codebase will perform evaluation during the training. To
disable this behavior, use --no-validate.

• --work-dir ${WORK_DIR}: Override the working directory specified in the config file.

• --resume-from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file.

Difference between resume-from and load-from: resume-from loads both the model weights and optimizer status,
and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that
is interrupted accidentally. load-from only loads the model weights and the training epoch starts from 0. It is usually
used for finetuning.

7.3 Train with multiple machines

If you run MMRotate on a cluster managed with slurm, you can use the script slurm_train.sh. (This script also
supports single machine training.)

[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}

If you have just multiple machines connected with ethernet, you can refer to PyTorch launch utility. Usually it is slow
if you do not have high speed networking like InfiniBand.

17
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7.4 Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need
to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train.sh to launch training jobs, you can set the port in commands.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4

If you use launch training jobs with Slurm, you need to modify the config files (usually the 6th line from the bottom in
config files) to set different communication ports.

In config1.py,

dist_params = dict(backend='nccl', port=29500)

In config2.py,

dist_params = dict(backend='nccl', port=29501)

Then you can launch two jobs with config1.py ang config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config2.py ${WORK_DIR}

18 Chapter 7. Train a model



CHAPTER

EIGHT

BENCHMARK AND MODEL ZOO

• Rotated RetinaNet-OBB/HBB (ICCV’2017)

• Rotated FasterRCNN-OBB (TPAMI’2017)

• Rotated RepPoints-OBB (ICCV’2019)

• RoI Transformer (CVPR’2019)

• Gliding Vertex (TPAMI’2020)

• R3Det (AAAI’2021)

• S2A-Net (TGRS’2021)

• ReDet (CVPR’2021)

• Beyond Bounding-Box (CVPR’2021)

• Oriented R-CNN (ICCV’2021)

• GWD (ICML’2021)

• KLD (NeurIPS’2021)

• SASM (AAAI’2022)

• KFIoU (arXiv)

• G-Rep (stay tuned)

8.1 Results on DOTA v1.0

• MS means multiple scale image split.

• RR means random rotation.

The above models are trained with 1 * 1080Ti and inferred with 1 * 2080Ti.
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CHAPTER

NINE

TUTORIAL 1: LEARN ABOUT CONFIGS

We incorporate modular and inheritance design into our config system, which is convenient to conduct various exper-
iments. If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/
CONFIG to see the complete config. The mmrotate is built upon the mmdet, thus it is highly recommended learning the
basic of mmdet.

9.1 Modify a config through script arguments

When submitting jobs using “tools/train.py” or “tools/test.py”, you may specify --cfg-options to in-place modify
the config.

• Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config. For example,
--cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to
train mode.

• Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline data.train.
pipeline is normally a list e.g. [dict(type='LoadImageFromFile'), ...]. If you want to change
'LoadImageFromFile' to 'LoadImageFromWebcam' in the pipeline, you may specify --cfg-options
data.train.pipeline.0.type=LoadImageFromWebcam.

• Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets workflow=[('train',
1)]. If you want to change this key, you may specify --cfg-options workflow="[(train,1),(val,1)]".
Note that the quotation mark ” is necessary to support list/tuple data types, and that NO white space is allowed
inside the quotation marks in the specified value.

9.2 Config file naming convention

We follow the below style to name config files. Contributors are advised to follow the same style.

{model}_[model setting]_{backbone}_{neck}_[norm setting]_[misc]_[gpu x batch_per_gpu]_
→˓{dataset}_{data setting}_{angle version}

{xxx} is required field and [yyy] is optional.

• {model}: model type like rotated_faster_rcnn, rotated_retinanet, etc.

• [model setting]: specific setting for some model, like hbb for rotated_retinanet, etc.

21

https://github.com/open-mmlab/mmdetection
https://mmdetection.readthedocs.io/en/latest/


mmrotate

• {backbone}: backbone type like r50 (ResNet-50), swin_tiny (SWIN-tiny).

• {neck}: neck type like fpn, refpn.

• [norm_setting]: bn (Batch Normalization) is used unless specified, other norm layer type could be gn (Group
Normalization), syncbn (Synchronized Batch Normalization). gn-head/gn-neck indicates GN is applied in
head/neck only, while gn-all means GN is applied in the entire model, e.g. backbone, neck, head.

• [misc]: miscellaneous setting/plugins of model, e.g. dconv, gcb, attention, albu, mstrain.

• [gpu x batch_per_gpu]: GPUs and samples per GPU, 1xb2 is used by default.

• {dataset}: dataset like dota.

• {angle version}: like oc, le135 or le90.

9.3 An example of RotatedRetinaNet

To help the users have a basic idea of a complete config and the modules in a modern detection system, we make brief
comments on the config of RotatedRetinaNet using ResNet50 and FPN as the following. For more detailed usage and
the corresponding alternative for each modules, please refer to the API documentation.

angle_version = 'oc' # The angle version
model = dict(

type='RotatedRetinaNet', # The name of detector
backbone=dict( # The config of backbone

type='ResNet', # The type of the backbone
depth=50, # The depth of backbone
num_stages=4, # Number of stages of the backbone.
out_indices=(0, 1, 2, 3), # The index of output feature maps produced in each␣

→˓stages
frozen_stages=1, # The weights in the first 1 stage are fronzen
zero_init_residual=False, # Whether to use zero init for last norm layer in␣

→˓resblocks to let them behave as identity.
norm_cfg=dict( # The config of normalization layers.

type='BN', # Type of norm layer, usually it is BN or GN
requires_grad=True), # Whether to train the gamma and beta in BN

norm_eval=True, # Whether to freeze the statistics in BN
style='pytorch', # The style of backbone, 'pytorch' means that stride 2 layers␣

→˓are in 3x3 conv, 'caffe' means stride 2 layers are in 1x1 convs.
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), # The␣

→˓ImageNet pretrained backbone to be loaded
neck=dict(

type='FPN', # The neck of detector is FPN. We also support 'ReFPN'
in_channels=[256, 512, 1024, 2048], # The input channels, this is consistent␣

→˓with the output channels of backbone
out_channels=256, # The output channels of each level of the pyramid feature map
start_level=1, # Index of the start input backbone level used to build the␣

→˓feature pyramid
add_extra_convs='on_input', # It specifies the source feature map of the extra␣

→˓convs
num_outs=5), # The number of output scales

bbox_head=dict(
type='RotatedRetinaHead',# The type of bbox head is 'RRetinaHead'
num_classes=15, # Number of classes for classification

(continues on next page)
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(continued from previous page)

in_channels=256, # Input channels for bbox head
stacked_convs=4, # Number of stacking convs of the head
feat_channels=256, # Number of hidden channels
assign_by_circumhbbox='oc', # The angle version of obb2hbb
anchor_generator=dict( # The config of anchor generator

type='RotatedAnchorGenerator', # The type of anchor generator
octave_base_scale=4, # The base scale of octave.
scales_per_octave=3, # Number of scales for each octave.
ratios=[1.0, 0.5, 2.0], # The ratio between height and width.
strides=[8, 16, 32, 64, 128]), # The strides of the anchor generator. This␣

→˓is consistent with the FPN feature strides.
bbox_coder=dict( # Config of box coder to encode and decode the boxes during␣

→˓training and testing
type='DeltaXYWHAOBBoxCoder', # Type of box coder.
angle_range='oc', # The angle version of box coder.
norm_factor=None, # The norm factor of box coder.
edge_swap=False, # The edge swap flag of box coder.
proj_xy=False, # The project flag of box coder.
target_means=(0.0, 0.0, 0.0, 0.0, 0.0), # The target means used to encode␣

→˓and decode boxes
target_stds=(1.0, 1.0, 1.0, 1.0, 1.0)), # The standard variance used to␣

→˓encode and decode boxes
loss_cls=dict( # Config of loss function for the classification branch

type='FocalLoss', # Type of loss for classification branch
use_sigmoid=True, # Whether the prediction is used for sigmoid or softmax
gamma=2.0, # The gamma for calculating the modulating factor
alpha=0.25, # A balanced form for Focal Loss
loss_weight=1.0), # Loss weight of the classification branch

loss_bbox=dict( # Config of loss function for the regression branch
type='L1Loss', # Type of loss
loss_weight=1.0)), # Loss weight of the regression branch

train_cfg=dict( # Config of training hyperparameters
assigner=dict( # Config of assigner

type='MaxIoUAssigner', # Type of assigner
pos_iou_thr=0.5, # IoU >= threshold 0.5 will be taken as positive samples
neg_iou_thr=0.4, # IoU < threshold 0.4 will be taken as negative samples
min_pos_iou=0, # The minimal IoU threshold to take boxes as positive samples
ignore_iof_thr=-1, # IoF threshold for ignoring bboxes
iou_calculator=dict(type='RBboxOverlaps2D')), # Type of Calculator for IoU

allowed_border=-1, # The border allowed after padding for valid anchors.
pos_weight=-1, # The weight of positive samples during training.
debug=False), # Whether to set the debug mode

test_cfg=dict( # Config of testing hyperparameters
nms_pre=2000, # The number of boxes before NMS
min_bbox_size=0, # The allowed minimal box size
score_thr=0.05, # Threshold to filter out boxes
nms=dict(iou_thr=0.1), # NMS threshold
max_per_img=2000)) # The number of boxes to be kept after NMS.

dataset_type = 'DOTADataset' # Dataset type, this will be used to define the dataset
data_root = '../datasets/split_1024_dota1_0/' # Root path of data
img_norm_cfg = dict( # Image normalization config to normalize the input images

mean=[123.675, 116.28, 103.53], # Mean values used to pre-training the pre-trained␣
→˓backbone models (continues on next page)
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std=[58.395, 57.12, 57.375], # Standard variance used to pre-training the pre-
→˓trained backbone models

to_rgb=True) # The channel orders of image used to pre-training the pre-trained␣
→˓backbone models
train_pipeline = [ # Training pipeline

dict(type='LoadImageFromFile'), # First pipeline to load images from file path
dict(type='LoadAnnotations', # Second pipeline to load annotations for current image

with_bbox=True), # Whether to use bounding box, True for detection
dict(type='RResize', # Augmentation pipeline that resize the images and their␣

→˓annotations
img_scale=(1024, 1024)), # The largest scale of image

dict(type='RRandomFlip', # Augmentation pipeline that flip the images and their␣
→˓annotations

flip_ratio=0.5, # The ratio or probability to flip
version='oc'), # The angle version

dict(
type='Normalize', # Augmentation pipeline that normalize the input images
mean=[123.675, 116.28, 103.53], # These keys are the same of img_norm_cfg since␣

→˓the
std=[58.395, 57.12, 57.375], # keys of img_norm_cfg are used here as arguments
to_rgb=True),

dict(type='Pad', # Padding config
size_divisor=32), # The number the padded images should be divisible

dict(type='DefaultFormatBundle'), # Default format bundle to gather data in the␣
→˓pipeline

dict(type='Collect', # Pipeline that decides which keys in the data should be␣
→˓passed to the detector

keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [

dict(type='LoadImageFromFile'), # First pipeline to load images from file path
dict(

type='MultiScaleFlipAug', # An encapsulation that encapsulates the testing␣
→˓augmentations

img_scale=(1024, 1024), # Decides the largest scale for testing, used for the␣
→˓Resize pipeline

flip=False, # Whether to flip images during testing
transforms=[

dict(type='RResize'), # Use resize augmentation
dict(

type='Normalize', # Normalization config, the values are from img_norm_
→˓cfg

mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),

dict(type='Pad', # Padding config to pad images divisible by 32.
size_divisor=32),

dict(type='DefaultFormatBundle'), # Default format bundle to gather data in␣
→˓the pipeline

dict(type='Collect', # Collect pipeline that collect necessary keys for␣
→˓testing.

keys=['img'])

(continues on next page)
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])
]
data = dict(

samples_per_gpu=2, # Batch size of a single GPU
workers_per_gpu=2, # Worker to pre-fetch data for each single GPU
train=dict( # Train dataset config

type='DOTADataset', # Type of dataset
ann_file=
'../datasets/split_1024_dota1_0/trainval/annfiles/', # Path of annotation file
img_prefix=
'../datasets/split_1024_dota1_0/trainval/images/', # Prefix of image path
pipeline=[ # pipeline, this is passed by the train_pipeline created before.

dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RResize', img_scale=(1024, 1024)),
dict(type='RRandomFlip', flip_ratio=0.5, version='oc'),
dict(

type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),

dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])

],
version='oc'),

val=dict( # Validation dataset config
type='DOTADataset',
ann_file=
'../datasets/split_1024_dota1_0/trainval/annfiles/',
img_prefix=
'../datasets/split_1024_dota1_0/trainval/images/',
pipeline=[

dict(type='LoadImageFromFile'),
dict(

type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[

dict(type='RResize'),
dict(

type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),

dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])

])
],
version='oc'),

test=dict( # Test dataset config, modify the ann_file for test-dev/test submission

(continues on next page)
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type='DOTADataset',
ann_file=
'../datasets/split_1024_dota1_0/test/images/',
img_prefix=
'../datasets/split_1024_dota1_0/test/images/',
pipeline=[ # Pipeline is passed by test_pipeline created before

dict(type='LoadImageFromFile'),
dict(

type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[

dict(type='RResize'),
dict(

type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),

dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])

])
],
version='oc'))

evaluation = dict( # The config to build the evaluation hook
interval=12, # Evaluation interval
metric='mAP') # Metrics used during evaluation

optimizer = dict( # Config used to build optimizer
type='SGD', # Type of optimizers
lr=0.0025, # Learning rate of optimizers
momentum=0.9, # Momentum
weight_decay=0.0001) # Weight decay of SGD

optimizer_config = dict( # Config used to build the optimizer hook
grad_clip=dict(

max_norm=35,
norm_type=2))

lr_config = dict( # Learning rate scheduler config used to register LrUpdater hook
policy='step', # The policy of scheduler
warmup='linear', # The warmup policy, also support `exp` and `constant`.
warmup_iters=500, # The number of iterations for warmup
warmup_ratio=0.3333333333333333, # The ratio of the starting learning rate used for␣

→˓warmup
step=[8, 11]) # Steps to decay the learning rate

runner = dict(
type='EpochBasedRunner', # Type of runner to use (i.e. IterBasedRunner or␣

→˓EpochBasedRunner)
max_epochs=12) # Runner that runs the workflow in total max_epochs. For␣

→˓IterBasedRunner use `max_iters`
checkpoint_config = dict( # Config to set the checkpoint hook

interval=12) # The save interval is 12
log_config = dict( # config to register logger hook

interval=50, # Interval to print the log

(continues on next page)
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hooks=[
# dict(type='TensorboardLoggerHook') # The Tensorboard logger is also supported
dict(type='TextLoggerHook')

]) # The logger used to record the training process.
dist_params = dict(backend='nccl') # Parameters to setup distributed training, the port␣
→˓can also be set.
log_level = 'INFO' # The level of logging.
load_from = None # load models as a pre-trained model from a given path. This will not␣
→˓resume training.
resume_from = None # Resume checkpoints from a given path, the training will be resumed␣
→˓from the epoch when the checkpoint's is saved.
workflow = [('train', 1)] # Workflow for runner. [('train', 1)] means there is only one␣
→˓workflow and the workflow named 'train' is executed once. The workflow trains the model␣
→˓by 12 epochs according to the total_epochs.
work_dir = './work_dirs/rotated_retinanet_hbb_r50_fpn_1x_dota_oc' # Directory to save␣
→˓the model checkpoints and logs for the current experiments.

9.4 FAQ

9.4.1 Use intermediate variables in configs

Some intermediate variables are used in the configs files, like train_pipeline/test_pipeline in datasets. It’s
worth noting that when modifying intermediate variables in the children configs, user need to pass the intermediate
variables into corresponding fields again. For example, we would like to use offline multi scale strategy to train a
RoI-Trans. train_pipeline are intermediate variable we would like modify.

_base_ = ['./roi_trans_r50_fpn_1x_dota_le90.py']

data_root = '../datasets/split_ms_dota1_0/'
angle_version = 'le90'
img_norm_cfg = dict(

mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [

dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RResize', img_scale=(1024, 1024)),
dict(

type='RRandomFlip',
flip_ratio=[0.25, 0.25, 0.25],
direction=['horizontal', 'vertical', 'diagonal'],
version=angle_version),

dict(
type='PolyRandomRotate',
rotate_ratio=0.5,
angles_range=180,
auto_bound=False,
version=angle_version),

dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),

(continues on next page)
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dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
data = dict(

train=dict(
pipeline=train_pipeline,
ann_file=data_root + 'trainval/annfiles/',
img_prefix=data_root + 'trainval/images/'),

val=dict(
ann_file=data_root + 'trainval/annfiles/',
img_prefix=data_root + 'trainval/images/'),

test=dict(
ann_file=data_root + 'test/images/',
img_prefix=data_root + 'test/images/'))

We first define the new train_pipeline/test_pipeline and pass them into data.

Similarly, if we would like to switch from SyncBN to BN or MMSyncBN, we need to substitute every norm_cfg in the
config.

_base_ = './roi_trans_r50_fpn_1x_dota_le90.py'
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(

backbone=dict(norm_cfg=norm_cfg),
neck=dict(norm_cfg=norm_cfg),
...)
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TEN

TUTORIAL 2: CUSTOMIZE DATASETS

10.1 Support new data format

To support a new data format, you can convert them to existing formats (DOTA format). You could choose to convert
them offline (before training by a script) or online (implement a new dataset and do the conversion at training). In
MMRotate, we recommend to convert the data into DOTA formats and do the conversion offline, thus you only need
to modify the config’s data annotation paths and classes after the conversion of your data.

10.1.1 Reorganize new data formats to existing format

The simplest way is to convert your dataset to existing dataset formats (DOTA).

The annotation txt files in DOTA format:

184 2875 193 2923 146 2932 137 2885 plane 0
66 2095 75 2142 21 2154 11 2107 plane 0
...

Each line represents an object and records it as a 10-dimensional array A.

• A[0:8]: Polygons with format (x1, y1, x2, y2, x3, y3, x4, y4).

• A[8]: Category.

• A[9]: Difficulty.

After the data pre-processing, there are two steps for users to train the customized new dataset with existing format
(e.g. DOTA format):

1. Modify the config file for using the customized dataset.

2. Check the annotations of the customized dataset.

Here we give an example to show the above two steps, which uses a customized dataset of 5 classes with COCO format
to train an existing Cascade Mask R-CNN R50-FPN detector.
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1. Modify the config file for using the customized dataset

There are two aspects involved in the modification of config file:

1. The data field. Specifically, you need to explicitly add the classes fields in data.train, data.val and
data.test.

2. The num_classes field in the model part. Explicitly over-write all the num_classes from default value (e.g.
80 in COCO) to your classes number.

In configs/my_custom_config.py:

# the new config inherits the base configs to highlight the necessary modification
_base_ = './rotated_retinanet_hbb_r50_fpn_1x_dota_oc'

# 1. dataset settings
dataset_type = 'DOTADataset'
classes = ('a', 'b', 'c', 'd', 'e')
data = dict(

samples_per_gpu=2,
workers_per_gpu=2,
train=dict(

type=dataset_type,
# explicitly add your class names to the field `classes`
classes=classes,
ann_file='path/to/your/train/annotation_data',
img_prefix='path/to/your/train/image_data'),

val=dict(
type=dataset_type,
# explicitly add your class names to the field `classes`
classes=classes,
ann_file='path/to/your/val/annotation_data',
img_prefix='path/to/your/val/image_data'),

test=dict(
type=dataset_type,
# explicitly add your class names to the field `classes`
classes=classes,
ann_file='path/to/your/test/annotation_data',
img_prefix='path/to/your/test/image_data'))

# 2. model settings
model = dict(

bbox_head=dict(
type='RotatedRetinaHead',
# explicitly over-write all the `num_classes` field from default 15 to 5.
num_classes=15))
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2. Check the annotations of the customized dataset

Assuming your customized dataset is DOTA format, make sure you have the correct annotations in the customized
dataset:

• The classes fields in your config file should have exactly the same elements and the same order with the A[8]
in txt annotations. MMRotate automatically maps the uncontinuous id in categories to the continuous label
indices, so the string order of name in categories field affects the order of label indices. Meanwhile, the string
order of classes in config affects the label text during visualization of predicted bounding boxes.

10.2 Customize datasets by dataset wrappers

MMRotate also supports many dataset wrappers to mix the dataset or modify the dataset distribution for training.
Currently it supports to three dataset wrappers as below:

• RepeatDataset: simply repeat the whole dataset.

• ClassBalancedDataset: repeat dataset in a class balanced manner.

• ConcatDataset: concat datasets.

10.2.1 Repeat dataset

We use RepeatDataset as wrapper to repeat the dataset. For example, suppose the original dataset is Dataset_A, to
repeat it, the config looks like the following

dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict( # This is the original config of Dataset_A

type='Dataset_A',
...
pipeline=train_pipeline

)
)

10.2.2 Class balanced dataset

We use ClassBalancedDataset as wrapper to repeat the dataset based on category frequency. The dataset to repeat
needs to instantiate function self.get_cat_ids(idx) to support ClassBalancedDataset. For example, to repeat
Dataset_A with oversample_thr=1e-3, the config looks like the following

dataset_A_train = dict(
type='ClassBalancedDataset',
oversample_thr=1e-3,
dataset=dict( # This is the original config of Dataset_A

type='Dataset_A',
...
pipeline=train_pipeline

)
)
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10.2.3 Concatenate dataset

There are three ways to concatenate the dataset.

1. If the datasets you want to concatenate are in the same type with different annotation files, you can concatenate
the dataset configs like the following.

dataset_A_train = dict(
type='Dataset_A',
ann_file = ['anno_file_1', 'anno_file_2'],
pipeline=train_pipeline

)

If the concatenated dataset is used for test or evaluation, this manner supports to evaluate each dataset separately.
To test the concatenated datasets as a whole, you can set separate_eval=False as below.

dataset_A_train = dict(
type='Dataset_A',
ann_file = ['anno_file_1', 'anno_file_2'],
separate_eval=False,
pipeline=train_pipeline

)

2. In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.

dataset_A_train = dict()
dataset_B_train = dict()

data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train = [

dataset_A_train,
dataset_B_train

],
val = dataset_A_val,
test = dataset_A_test
)

If the concatenated dataset is used for test or evaluation, this manner also supports to evaluate each dataset
separately.

3. We also support to define ConcatDataset explicitly as the following.

dataset_A_val = dict()
dataset_B_val = dict()

data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dataset_A_train,
val=dict(

type='ConcatDataset',
datasets=[dataset_A_val, dataset_B_val],
separate_eval=False))
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This manner allows users to evaluate all the datasets as a single one by setting separate_eval=False.

Note:

1. The option separate_eval=False assumes the datasets use self.data_infos during evaluation. There-
fore, COCO datasets do not support this behavior since COCO datasets do not fully rely on self.data_infos
for evaluation. Combining different types of datasets and evaluating them as a whole is not tested thus is not
suggested.

2. Evaluating ClassBalancedDataset and RepeatDataset is not supported thus evaluating concatenated
datasets of these types is also not supported.

A more complex example that repeats Dataset_A and Dataset_B by N and M times, respectively, and then concate-
nates the repeated datasets is as the following.

dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict(

type='Dataset_A',
...
pipeline=train_pipeline

)
)
dataset_A_val = dict(

...
pipeline=test_pipeline

)
dataset_A_test = dict(

...
pipeline=test_pipeline

)
dataset_B_train = dict(

type='RepeatDataset',
times=M,
dataset=dict(

type='Dataset_B',
...
pipeline=train_pipeline

)
)
data = dict(

imgs_per_gpu=2,
workers_per_gpu=2,
train = [

dataset_A_train,
dataset_B_train

],
val = dataset_A_val,
test = dataset_A_test

)

10.2. Customize datasets by dataset wrappers 33



mmrotate

34 Chapter 10. Tutorial 2: Customize Datasets



CHAPTER

ELEVEN

TUTORIAL 3: CUSTOMIZE MODELS

We basically categorize model components into 5 types.

• backbone: usually an FCN network to extract feature maps, e.g., ResNet, Swin.

• neck: the component between backbones and heads, e.g., FPN, ReFPN.

• head: the component for specific tasks, e.g., bbox prediction.

• roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align Rotated.

• loss: the component in head for calculating losses, e.g., FocalLoss, GWDLoss, and KFIoULoss.

11.1 Develop new components

11.1.1 Add a new backbone

Here we show how to develop new components with an example of MobileNet.

1. Define a new backbone (e.g. MobileNet)

Create a new file mmrotate/models/backbones/mobilenet.py.

import torch.nn as nn

from mmrotate.models.builder import ROTATED_BACKBONES

@ROTATED_BACKBONES.register_module()
class MobileNet(nn.Module):

def __init__(self, arg1, arg2):
pass

def forward(self, x): # should return a tuple
pass
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2. Import the module

You can either add the following line to mmrotate/models/backbones/__init__.py

from .mobilenet import MobileNet

or alternatively add

custom_imports = dict(
imports=['mmrotate.models.backbones.mobilenet'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

3. Use the backbone in your config file

model = dict(
...
backbone=dict(

type='MobileNet',
arg1=xxx,
arg2=xxx),

...

11.1.2 Add new necks

1. Define a neck (e.g. PAFPN)

Create a new file mmrotate/models/necks/pafpn.py.

from mmrotate.models.builder import ROTATED_NECKS

@ROTATED_NECKS.register_module()
class PAFPN(nn.Module):

def __init__(self,
in_channels,
out_channels,
num_outs,
start_level=0,
end_level=-1,
add_extra_convs=False):

pass

def forward(self, inputs):
# implementation is ignored
pass
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2. Import the module

You can either add the following line to mmrotate/models/necks/__init__.py,

from .pafpn import PAFPN

or alternatively add

custom_imports = dict(
imports=['mmrotate.models.necks.pafpn.py'],
allow_failed_imports=False)

to the config file and avoid modifying the original code.

3. Modify the config file

neck=dict(
type='PAFPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5)

11.1.3 Add new heads

Here we show how to develop a new head with the example of Double Head R-CNN as the following.

First, add a new bbox head in mmrotate/models/roi_heads/bbox_heads/double_bbox_head.py. Double Head
R-CNN implements a new bbox head for object detection. To implement a bbox head, basically we need to implement
three functions of the new module as the following.

from mmrotate.models.builder import ROTATED_HEADS
from mmrotate.models.roi_heads.bbox_heads.bbox_head import BBoxHead

@ROTATED_HEADS.register_module()
class DoubleConvFCBBoxHead(BBoxHead):

r"""Bbox head used in Double-Head R-CNN

/-> cls
/-> shared convs ->

\-> reg
roi features

/-> cls
\-> shared fc ->

\-> reg
""" # noqa: W605

def __init__(self,
num_convs=0,
num_fcs=0,
conv_out_channels=1024,
fc_out_channels=1024,
conv_cfg=None,

(continues on next page)
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norm_cfg=dict(type='BN'),
**kwargs):

kwargs.setdefault('with_avg_pool', True)
super(DoubleConvFCBBoxHead, self).__init__(**kwargs)

def forward(self, x_cls, x_reg):

Second, implement a new RoI Head if it is necessary. We plan to inherit the new DoubleHeadRoIHead from
StandardRoIHead. We can find that a StandardRoIHead already implements the following functions.

import torch

from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler
from mmrotate.models.builder import ROTATED_HEADS, build_head, build_roi_extractor
from mmrotate.models.roi_heads.base_roi_head import BaseRoIHead
from mmrotate.models.roi_heads.test_mixins import BBoxTestMixin, MaskTestMixin

@ROTATED_HEADS.register_module()
class StandardRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin):

"""Simplest base roi head including one bbox head and one mask head.
"""

def init_assigner_sampler(self):

def init_bbox_head(self, bbox_roi_extractor, bbox_head):

def forward_dummy(self, x, proposals):

def forward_train(self,
x,
img_metas,
proposal_list,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=None,
gt_masks=None):

def _bbox_forward(self, x, rois):

def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels,
img_metas):

def simple_test(self,
x,
proposal_list,
img_metas,
proposals=None,
rescale=False):

(continues on next page)
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"""Test without augmentation."""

Double Head’s modification is mainly in the bbox_forward logic, and it inherits other logics from the
StandardRoIHead. In the mmrotate/models/roi_heads/double_roi_head.py, we implement the new RoI
Head as the following:

from mmrotate.models.builder import ROTATED_HEADS
from mmrotate.models.roi_heads.standard_roi_head import StandardRoIHead

@ROTATED_HEADS.register_module()
class DoubleHeadRoIHead(StandardRoIHead):

"""RoI head for Double Head RCNN

https://arxiv.org/abs/1904.06493
"""

def __init__(self, reg_roi_scale_factor, **kwargs):
super(DoubleHeadRoIHead, self).__init__(**kwargs)
self.reg_roi_scale_factor = reg_roi_scale_factor

def _bbox_forward(self, x, rois):
bbox_cls_feats = self.bbox_roi_extractor(

x[:self.bbox_roi_extractor.num_inputs], rois)
bbox_reg_feats = self.bbox_roi_extractor(

x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.reg_roi_scale_factor)

if self.with_shared_head:
bbox_cls_feats = self.shared_head(bbox_cls_feats)
bbox_reg_feats = self.shared_head(bbox_reg_feats)

cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats)

bbox_results = dict(
cls_score=cls_score,
bbox_pred=bbox_pred,
bbox_feats=bbox_cls_feats)

return bbox_results

Last, the users need to add the module in mmrotate/models/bbox_heads/__init__.py and mmrotate/models/
roi_heads/__init__.py thus the corresponding registry could find and load them.

Alternatively, the users can add

custom_imports=dict(
imports=['mmrotate.models.roi_heads.double_roi_head', 'mmrotate.models.bbox_heads.

→˓double_bbox_head'])

to the config file and achieve the same goal.
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11.1.4 Add new loss

Assume you want to add a new loss as MyLoss, for bounding box regression. To add a new loss function, the users
need implement it in mmrotate/models/losses/my_loss.py. The decorator weighted_loss enable the loss to
be weighted for each element.

import torch
import torch.nn as nn

from mmrotate.models.builder import ROTATED_LOSSES
from mmdet.models.losses.utils import weighted_loss

@weighted_loss
def my_loss(pred, target):

assert pred.size() == target.size() and target.numel() > 0
loss = torch.abs(pred - target)
return loss

@ROTATED_LOSSES.register_module()
class MyLoss(nn.Module):

def __init__(self, reduction='mean', loss_weight=1.0):
super(MyLoss, self).__init__()
self.reduction = reduction
self.loss_weight = loss_weight

def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):

assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (

reduction_override if reduction_override else self.reduction)
loss_bbox = self.loss_weight * my_loss(

pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss_bbox

Then the users need to add it in the mmrotate/models/losses/__init__.py.

from .my_loss import MyLoss, my_loss

Alternatively, you can add

custom_imports=dict(
imports=['mmrotate.models.losses.my_loss'])

to the config file and achieve the same goal.

To use it, modify the loss_xxx field. Since MyLoss is for regression, you need to modify the loss_bbox field in the
head.
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loss_bbox=dict(type='MyLoss', loss_weight=1.0))
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TWELVE

TUTORIAL 4: CUSTOMIZE RUNTIME SETTINGS

12.1 Customize optimization settings

12.1.1 Customize optimizer supported by Pytorch

We already support to use all the optimizers implemented by PyTorch, and the only modification is to change the
optimizer field of config files. For example, if you want to use ADAM (note that the performance could drop a lot), the
modification could be as the following.

optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)

To modify the learning rate of the model, the users only need to modify the lr in the config of optimizer. The users
can directly set arguments following the API doc of PyTorch.

12.1.2 Customize self-implemented optimizer

1. Define a new optimizer

A customized optimizer could be defined as following.

Assume you want to add a optimizer named MyOptimizer, which has arguments a, b, and c. You need to create a new
directory named mmrotate/core/optimizer. And then implement the new optimizer in a file, e.g., in mmrotate/
core/optimizer/my_optimizer.py:

from mmdet.core.optimizer.registry import OPTIMIZERS
from torch.optim import Optimizer

@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

def __init__(self, a, b, c)
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2. Add the optimizer to registry

To find the above module defined above, this module should be imported into the main namespace at first. There are
two options to achieve it.

• Modify mmrotate/core/optimizer/__init__.py to import it.

The newly defined module should be imported in mmrotate/core/optimizer/__init__.py so that the reg-
istry will find the new module and add it:

from .my_optimizer import MyOptimizer

• Use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmrotate.core.optimizer.my_optimizer'], allow_failed_
→˓imports=False)

The module mmrotate.core.optimizer.my_optimizer will be imported at the beginning of the program and the
class MyOptimizer is then automatically registered. Note that only the package containing the class MyOptimizer
should be imported. mmrotate.core.optimizer.my_optimizer.MyOptimizer cannot be imported directly.

Actually users can use a totally different file directory structure using this importing method, as long as the module
root can be located in PYTHONPATH.

3. Specify the optimizer in the config file

Then you can use MyOptimizer in optimizer field of config files. In the configs, the optimizers are defined by the
field optimizer like the following:

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)

To use your own optimizer, the field can be changed to

optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)

12.1.3 Customize optimizer constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.
The users can do those fine-grained parameter tuning through customizing optimizer constructor.

from mmcv.utils import build_from_cfg

from mmcv.runner.optimizer import OPTIMIZER_BUILDERS, OPTIMIZERS
from mmrotate.utils import get_root_logger
from .my_optimizer import MyOptimizer

@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor(object):

def __init__(self, optimizer_cfg, paramwise_cfg=None):

def __call__(self, model):

(continues on next page)
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(continued from previous page)

return my_optimizer

The default optimizer constructor is implemented here, which could also serve as a template for new optimizer con-
structor.

12.1.4 Additional settings

Tricks not implemented by the optimizer should be implemented through optimizer constructor (e.g., set parameter-
wise learning rates) or hooks. We list some common settings that could stabilize the training or accelerate the training.
Feel free to create PR, issue for more settings.

• Use gradient clip to stabilize training: Some models need gradient clip to clip the gradients to stabilize the
training process. An example is as below:

optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))

If your config inherits the base config which already sets the optimizer_config, you might need
_delete_=True to override the unnecessary settings. See the config documentation for more details.

• Use momentum schedule to accelerate model convergence: We support momentum scheduler to modify
model’s momentum according to learning rate, which could make the model converge in a faster way. Mo-
mentum scheduler is usually used with LR scheduler, for example, the following config is used in 3D detection
to accelerate convergence. For more details, please refer to the implementation of CyclicLrUpdater and Cyclic-
MomentumUpdater.

lr_config = dict(
policy='cyclic',
target_ratio=(10, 1e-4),
cyclic_times=1,
step_ratio_up=0.4,

)
momentum_config = dict(

policy='cyclic',
target_ratio=(0.85 / 0.95, 1),
cyclic_times=1,
step_ratio_up=0.4,

)

12.2 Customize training schedules

By default we use step learning rate with 1x schedule, this calls StepLRHook in MMCV. We support many other
learning rate schedule here, such as CosineAnnealing and Poly schedule. Here are some examples

• Poly schedule:

lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)

• ConsineAnnealing schedule:
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lr_config = dict(
policy='CosineAnnealing',
warmup='linear',
warmup_iters=1000,
warmup_ratio=1.0 / 10,
min_lr_ratio=1e-5)

12.3 Customize workflow

Workflow is a list of (phase, epochs) to specify the running order and epochs. By default it is set to be

workflow = [('train', 1)]

which means running 1 epoch for training. Sometimes user may want to check some metrics (e.g. loss, accuracy) about
the model on the validate set. In such case, we can set the workflow as

[('train', 1), ('val', 1)]

so that 1 epoch for training and 1 epoch for validation will be run iteratively.

Note:

1. The parameters of model will not be updated during val epoch.

2. Keyword total_epochs in the config only controls the number of training epochs and will not affect the vali-
dation workflow.

3. Workflows [('train', 1), ('val', 1)] and [('train', 1)] will not change the behavior of EvalHook
because EvalHook is called by after_train_epoch and validation workflow only affect hooks that are called
through after_val_epoch. Therefore, the only difference between [('train', 1), ('val', 1)] and
[('train', 1)] is that the runner will calculate losses on validation set after each training epoch.

12.4 Customize hooks

12.4.1 Customize self-implemented hooks

1. Implement a new hook

There are some occasions when the users might need to implement a new hook. MMRotate supports customized hooks
in training. Thus the users could implement a hook directly in mmrotate or their mmdet-based codebases and use the
hook by only modifying the config in training. Here we give an example of creating a new hook in mmrotate and using
it in training.

from mmcv.runner import HOOKS, Hook

@HOOKS.register_module()
class MyHook(Hook):

def __init__(self, a, b):
pass

(continues on next page)
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def before_run(self, runner):
pass

def after_run(self, runner):
pass

def before_epoch(self, runner):
pass

def after_epoch(self, runner):
pass

def before_iter(self, runner):
pass

def after_iter(self, runner):
pass

Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the training
in before_run, after_run, before_epoch, after_epoch, before_iter, and after_iter.

2. Register the new hook

Then we need to make MyHook imported. Assuming the file is in mmrotate/core/utils/my_hook.py there are two
ways to do that:

• Modify mmrotate/core/utils/__init__.py to import it.

The newly defined module should be imported in mmrotate/core/utils/__init__.py so that the registry
will find the new module and add it:

from .my_hook import MyHook

• Use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmrotate.core.utils.my_hook'], allow_failed_
→˓imports=False)

3. Modify the config

custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value)

]

You can also set the priority of the hook by adding key priority to 'NORMAL' or 'HIGHEST' as below

custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')

]

By default the hook’s priority is set as NORMAL during registration.
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12.4.2 Use hooks implemented in MMCV

If the hook is already implemented in MMCV, you can directly modify the config to use the hook as below

4. Example: NumClassCheckHook

We implement a customized hook named NumClassCheckHook to check whether the num_classes in head matches
the length of CLASSSES in dataset.

We set it in default_runtime.py.

custom_hooks = [dict(type='NumClassCheckHook')]

12.4.3 Modify default runtime hooks

There are some common hooks that are not registered through custom_hooks, they are

• log_config

• checkpoint_config

• evaluation

• lr_config

• optimizer_config

• momentum_config

In those hooks, only the logger hook has the VERY_LOW priority, others’ priority are NORMAL. The above-mentioned
tutorials already covers how to modify optimizer_config, momentum_config, and lr_config. Here we reveals
how what we can do with log_config, checkpoint_config, and evaluation.

Checkpoint config

The MMCV runner will use checkpoint_config to initialize CheckpointHook.

checkpoint_config = dict(interval=1)

The users could set max_keep_ckpts to only save only small number of checkpoints or decide whether to store state
dict of optimizer by save_optimizer. More details of the arguments are here

Log config

The log_configwraps multiple logger hooks and enables to set intervals. Now MMCV supports WandbLoggerHook,
MlflowLoggerHook, and TensorboardLoggerHook. The detail usages can be found in the doc.

log_config = dict(
interval=50,
hooks=[

dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')

])
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Evaluation config

The config of evaluation will be used to initialize the EvalHook. Except the key interval, other arguments such
as metric will be passed to the dataset.evaluate()

evaluation = dict(interval=1, metric='bbox')
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FOURTEEN

FREQUENTLY ASKED QUESTIONS

We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list
if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue,
please create an issue using the provided templates and make sure you fill in all required information in the template.

14.1 MMCV Installation

• Compatibility issue between MMCV and MMDetection; “ConvWS is already registered in conv layer”; “Asser-
tionError: MMCV==xxx is used but incompatible. Please install mmcv>=xxx, <=xxx.”

Please install the correct version of MMCV for the version of your MMDetection following the installation
instruction.

• “No module named ‘mmcv.ops’”; “No module named ‘mmcv._ext’”.

1. Uninstall existing mmcv in the environment using pip uninstall mmcv.

2. Install mmcv-full following the installation instruction.

14.2 PyTorch/CUDA Environment

• “invalid device function” or “no kernel image is available for execution”.

1. Check if your cuda runtime version (under /usr/local/), nvcc --version and conda list
cudatoolkit version match.

2. Run python mmdet/utils/collect_env.py to check whether PyTorch, torchvision, and MMCV are
built for the correct GPU architecture. You may need to set TORCH_CUDA_ARCH_LIST to reinstall
MMCV. The GPU arch table could be found here, i.e. run TORCH_CUDA_ARCH_LIST=7.0 pip install
mmcv-full to build MMCV for Volta GPUs. The compatibility issue could happen when using old GPUS,
e.g., Tesla K80 (3.7) on colab.

3. Check whether the running environment is the same as that when mmcv/mmdet has compiled. For example,
you may compile mmcv using CUDA 10.0 but run it on CUDA 9.0 environments.

• “undefined symbol” or “cannot open xxx.so”.

1. If those symbols are CUDA/C++ symbols (e.g., libcudart.so or GLIBCXX), check whether the CUDA/GCC
runtimes are the same as those used for compiling mmcv, i.e. run python mmdet/utils/collect_env.
py to see if "MMCV Compiler"/"MMCV CUDA Compiler" is the same as "GCC"/"CUDA_HOME".

2. If those symbols are PyTorch symbols (e.g., symbols containing caffe, aten, and TH), check whether the
PyTorch version is the same as that used for compiling mmcv.
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3. Run python mmdet/utils/collect_env.py to check whether PyTorch, torchvision, and MMCV are
built by and running on the same environment.

• setuptools.sandbox.UnpickleableException: DistutilsSetupError(“each element of ‘ext_modules’ option must be
an Extension instance or 2-tuple”)

1. If you are using miniconda rather than anaconda, check whether Cython is installed as indicated in #3379.
You need to manually install Cython first and then run command pip install -r requirements.txt.

2. You may also need to check the compatibility between the setuptools, Cython, and PyTorch in your
environment.

• “Segmentation fault”.

1. Check you GCC version and use GCC 5.4. This usually caused by the incompatibility between PyTorch
and the environment (e.g., GCC < 4.9 for PyTorch). We also recommend the users to avoid using GCC
5.5 because many feedbacks report that GCC 5.5 will cause “segmentation fault” and simply changing it to
GCC 5.4 could solve the problem.

2. Check whether PyTorch is correctly installed and could use CUDA op, e.g. type the following command
in your terminal.

python -c 'import torch; print(torch.cuda.is_available())'

And see whether they could correctly output results.

3. If Pytorch is correctly installed, check whether MMCV is correctly installed.

python -c 'import mmcv; import mmcv.ops'

If MMCV is correctly installed, then there will be no issue of the above two commands.

4. If MMCV and Pytorch is correctly installed, you man use ipdb, pdb to set breakpoints or directly add
‘print’ in mmdetection code and see which part leads the segmentation fault.

14.3 Training

• “Loss goes Nan”

1. Check if the dataset annotations are valid: zero-size bounding boxes will cause the regression loss to be
Nan due to the commonly used transformation for box regression. Some small size (width or height are
smaller than 1) boxes will also cause this problem after data augmentation (e.g., instaboost). So check the
data and try to filter out those zero-size boxes and skip some risky augmentations on the small-size boxes
when you face the problem.

2. Reduce the learning rate: the learning rate might be too large due to some reasons, e.g., change of batch
size. You can rescale them to the value that could stably train the model.

3. Extend the warmup iterations: some models are sensitive to the learning rate at the start of the training.
You can extend the warmup iterations, e.g., change the warmup_iters from 500 to 1000 or 2000.

4. Add gradient clipping: some models requires gradient clipping to stabilize the training process.
The default of grad_clip is None, you can add gradient clippint to avoid gradients that are too
large, i.e., set optimizer_config=dict(_delete_=True, grad_clip=dict(max_norm=35,
norm_type=2)) in your config file. If your config does not inherits from any basic
config that contains optimizer_config=dict(grad_clip=None), you can simply add
optimizer_config=dict(grad_clip=dict(max_norm=35, norm_type=2)).

• ’GPU out of memory”
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1. There are some scenarios when there are large amounts of ground truth boxes, which may cause OOM
during target assignment. You can set gpu_assign_thr=N in the config of assigner thus the assigner will
calculate box overlaps through CPU when there are more than N GT boxes.

2. Set with_cp=True in the backbone. This uses the sublinear strategy in PyTorch to reduce GPU memory
cost in the backbone.

3. Try mixed precision training using following the examples in config/fp16. The loss_scale might need
further tuning for different models.

• “RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one”

1. This error indicates that your module has parameters that were not used in producing loss. This phenomenon
may be caused by running different branches in your code in DDP mode.

2. You can set find_unused_parameters = True in the config to solve the above problems or find those
unused parameters manually.

14.4 Evaluation

• COCO Dataset, AP or AR = -1

1. According to the definition of COCO dataset, the small and medium areas in an image are less than 1024
(32*32), 9216 (96*96), respectively.

2. If the corresponding area has no object, the result of AP and AR will set to -1.
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SEVENTEEN

MMROTATE

17.1 mmrotate.models

17.1.1 backbones

17.1.2 dense_heads

17.1.3 detectors

17.1.4 losses

17.1.5 roi_heads

17.2 mmrotate.core

17.3 mmrotate.datasets

class mmrotate.datasets.DOTADataset(ann_file, pipeline, version='oc', difficulty=100, **kwargs)
DOTA dataset for detection.

Parameters

• ann_file (str) – Annotation file path.

• pipeline (list[dict]) – Processing pipeline.

• version (str, optional) – Angle representations. Defaults to ‘oc’.

• difficulty (bool, optional) – The difficulty threshold of GT.

evaluate(results, metric='mAP', logger=None, proposal_nums=(100, 300, 1000), iou_thr=0.5,
scale_ranges=None)

Evaluate the dataset.

Parameters

• results (list) – Testing results of the dataset.

• metric (str | list[str]) – Metrics to be evaluated.

• logger (logging.Logger | None | str) – Logger used for printing related informa-
tion during evaluation. Default: None.
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• proposal_nums (Sequence[int]) – Proposal number used for evaluating recalls, such
as recall@100, recall@1000. Default: (100, 300, 1000).

• iou_thr (float | list[float]) – IoU threshold. It must be a float when evaluating
mAP, and can be a list when evaluating recall. Default: 0.5.

• scale_ranges (list[tuple] | None) – Scale ranges for evaluating mAP. Default:
None.

format_results(results, submission_dir=None, **kwargs)
Format the results to submission text (standard format for DOTA evaluation).

Parameters

• results (list) – Testing results of the dataset.

• submission_dir (str, optional) – The folder that contains submission

• files. – If not specified, a temp folder will be created. Default: None.

Returns

(result_files, tmp_dir), result_files is a dict containing the json filepaths, tmp_dir is the
temporal directory created for saving json files when submission_dir is not specified.

Return type tuple

load_annotations(ann_folder)

Params: ann_folder: folder that contains DOTA v1 annotations txt files

merge_det(results)
Merging patch bboxes into full image.

Params: results (list): Testing results of the dataset.

class mmrotate.datasets.SARDataset(ann_file, pipeline, version='oc', difficulty=100, **kwargs)
SAR ship dataset for detection (Support RSSDD and HRSID).
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• search
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