Shortcuts

Source code for mmrotate.models.dense_heads.csl_rotated_fcos_head

# Copyright (c) OpenMMLab. All rights reserved.

import torch
import torch.nn as nn
from mmcv.cnn import Scale
from mmcv.runner import force_fp32
from mmdet.core import reduce_mean

from mmrotate.core import build_bbox_coder, multiclass_nms_rotated
from ..builder import ROTATED_HEADS
from .rotated_anchor_free_head import RotatedAnchorFreeHead
from .rotated_fcos_head import RotatedFCOSHead

INF = 1e8


[docs]@ROTATED_HEADS.register_module() class CSLRFCOSHead(RotatedFCOSHead): """Use `Circular Smooth Label (CSL) <https://link.springer.com/chapter/10.1007/978-3-030-58598-3_40>`_ . in `FCOS <https://arxiv.org/abs/1904.01355>`_. Args: separate_angle (bool): If true, angle prediction is separated from bbox regression loss. In CSL only support True. Default: True. scale_angle (bool): If true, add scale to angle pred branch. In CSL only support False. Default: False. angle_coder (dict): Config of angle coder. """ # noqa: E501 def __init__(self, separate_angle=True, scale_angle=False, angle_coder=dict( type='CSLCoder', angle_version='le90', omega=1, window='gaussian', radius=6), **kwargs): self.angle_coder = build_bbox_coder(angle_coder) assert separate_angle, 'Only support separate angle in CSL' assert scale_angle is False, 'Only support no scale angle in CSL' self.coding_len = self.angle_coder.coding_len super().__init__( separate_angle=separate_angle, scale_angle=scale_angle, **kwargs) def _init_layers(self): """Initialize layers of the head.""" RotatedAnchorFreeHead._init_layers(self) self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) self.conv_angle = nn.Conv2d( self.feat_channels, self.coding_len, 3, padding=1) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
[docs] @force_fp32( apply_to=('cls_scores', 'bbox_preds', 'angle_preds', 'centernesses')) def loss(self, cls_scores, bbox_preds, angle_preds, centernesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute loss of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4. angle_preds (list[Tensor]): Box angle for each scale level, \ each is a 4D-tensor, the channel number is num_points * 1. centernesses (list[Tensor]): centerness for each scale level, each is a 4D-tensor, the channel number is num_points * 1. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert len(cls_scores) == len(bbox_preds) \ == len(angle_preds) == len(centernesses) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] all_level_points = self.prior_generator.grid_priors( featmap_sizes, dtype=bbox_preds[0].dtype, device=bbox_preds[0].device) labels, bbox_targets, angle_targets = self.get_targets( all_level_points, gt_bboxes, gt_labels) num_imgs = cls_scores[0].size(0) # flatten cls_scores, bbox_preds and centerness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) for bbox_pred in bbox_preds ] flatten_angle_preds = [ angle_pred.permute(0, 2, 3, 1).reshape(-1, self.coding_len) for angle_pred in angle_preds ] flatten_centerness = [ centerness.permute(0, 2, 3, 1).reshape(-1) for centerness in centernesses ] flatten_cls_scores = torch.cat(flatten_cls_scores) flatten_bbox_preds = torch.cat(flatten_bbox_preds) flatten_angle_preds = torch.cat(flatten_angle_preds) flatten_centerness = torch.cat(flatten_centerness) flatten_labels = torch.cat(labels) flatten_bbox_targets = torch.cat(bbox_targets) flatten_angle_targets = torch.cat(angle_targets) # repeat points to align with bbox_preds flatten_points = torch.cat( [points.repeat(num_imgs, 1) for points in all_level_points]) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes bg_class_ind = self.num_classes pos_inds = ((flatten_labels >= 0) & (flatten_labels < bg_class_ind)).nonzero().reshape(-1) num_pos = torch.tensor( len(pos_inds), dtype=torch.float, device=bbox_preds[0].device) num_pos = max(reduce_mean(num_pos), 1.0) loss_cls = self.loss_cls( flatten_cls_scores, flatten_labels, avg_factor=num_pos) pos_bbox_preds = flatten_bbox_preds[pos_inds] pos_angle_preds = flatten_angle_preds[pos_inds] pos_centerness = flatten_centerness[pos_inds] pos_bbox_targets = flatten_bbox_targets[pos_inds] pos_angle_targets = flatten_angle_targets[pos_inds] pos_centerness_targets = self.centerness_target(pos_bbox_targets) # centerness weighted iou loss centerness_denorm = max( reduce_mean(pos_centerness_targets.sum().detach()), 1e-6) if len(pos_inds) > 0: pos_points = flatten_points[pos_inds] if self.seprate_angle: bbox_coder = self.h_bbox_coder else: bbox_coder = self.bbox_coder pos_bbox_preds = torch.cat([pos_bbox_preds, pos_angle_preds], dim=-1) pos_bbox_targets = torch.cat( [pos_bbox_targets, pos_angle_targets], dim=-1) pos_decoded_bbox_preds = bbox_coder.decode(pos_points, pos_bbox_preds) pos_decoded_target_preds = bbox_coder.decode( pos_points, pos_bbox_targets) loss_bbox = self.loss_bbox( pos_decoded_bbox_preds, pos_decoded_target_preds, weight=pos_centerness_targets, avg_factor=centerness_denorm) if self.seprate_angle: loss_angle = self.loss_angle( pos_angle_preds, pos_angle_targets, avg_factor=num_pos) loss_centerness = self.loss_centerness( pos_centerness, pos_centerness_targets, avg_factor=num_pos) else: loss_bbox = pos_bbox_preds.sum() loss_centerness = pos_centerness.sum() if self.seprate_angle: loss_angle = pos_angle_preds.sum() if self.seprate_angle: return dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_angle=loss_angle, loss_centerness=loss_centerness) else: return dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_centerness=loss_centerness)
def _get_target_single(self, gt_bboxes, gt_labels, points, regress_ranges, num_points_per_lvl): """Compute regression, classification and angle targets for a single image.""" num_points = points.size(0) num_gts = gt_labels.size(0) if num_gts == 0: return gt_labels.new_full((num_points,), self.num_classes), \ gt_bboxes.new_zeros((num_points, 4)), \ gt_bboxes.new_zeros((num_points, self.coding_len)) labels, bbox_targets, angle_targets = \ super(CSLRFCOSHead, self)._get_target_single(gt_bboxes, gt_labels, points, regress_ranges, num_points_per_lvl) angle_targets = self.angle_coder.encode(angle_targets) return labels, bbox_targets, angle_targets def _get_bboxes_single(self, cls_scores, bbox_preds, angle_preds, centernesses, mlvl_points, img_shape, scale_factor, cfg, rescale=False): """Transform outputs for a single batch item into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for a single scale level Has shape (num_points * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for a single scale level with shape (num_points * 4, H, W). angle_preds (list[Tensor]): Box angle for a single scale level \ with shape (N, num_points * 1, H, W). centernesses (list[Tensor]): Centerness for a single scale level with shape (num_points * 1, H, W). mlvl_points (list[Tensor]): Box reference for a single scale level with shape (num_total_points, 4). img_shape (tuple[int]): Shape of the input image, (height, width, 3). scale_factor (ndarray): Scale factor of the image arrange as (w_scale, h_scale, w_scale, h_scale). cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Returns: Tensor: Labeled boxes in shape (n, 6), where the first 5 columns are bounding box positions (x, y, w, h, angle) and the 6-th column is a score between 0 and 1. """ cfg = self.test_cfg if cfg is None else cfg assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) mlvl_bboxes = [] mlvl_scores = [] mlvl_centerness = [] for cls_score, bbox_pred, angle_pred, centerness, points in zip( cls_scores, bbox_preds, angle_preds, centernesses, mlvl_points): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(1, 2, 0).reshape( -1, self.cls_out_channels).sigmoid() centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid() bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) angle_pred = angle_pred.permute(1, 2, 0).reshape(-1, self.coding_len) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: max_scores, _ = (scores * centerness[:, None]).max(dim=1) _, topk_inds = max_scores.topk(nms_pre) points = points[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] angle_pred = angle_pred[topk_inds, :] scores = scores[topk_inds, :] centerness = centerness[topk_inds] angle_pred = self.angle_coder.decode(angle_pred).unsqueeze(-1) bbox_pred = torch.cat([bbox_pred, angle_pred], dim=-1) bboxes = self.bbox_coder.decode( points, bbox_pred, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_centerness.append(centerness) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: scale_factor = mlvl_bboxes.new_tensor(scale_factor) mlvl_bboxes[..., :4] = mlvl_bboxes[..., :4] / scale_factor mlvl_scores = torch.cat(mlvl_scores) padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) mlvl_centerness = torch.cat(mlvl_centerness) det_bboxes, det_labels = multiclass_nms_rotated( mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img, score_factors=mlvl_centerness) return det_bboxes, det_labels
[docs] @force_fp32( apply_to=('cls_scores', 'bbox_preds', 'angle_preds', 'centerness')) def refine_bboxes(self, cls_scores, bbox_preds, angle_preds, centernesses): """This function will be used in S2ANet, whose num_anchors=1.""" num_levels = len(cls_scores) assert num_levels == len(bbox_preds) num_imgs = cls_scores[0].size(0) for i in range(num_levels): assert num_imgs == cls_scores[i].size(0) == bbox_preds[i].size(0) # device = cls_scores[0].device featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_points = self.prior_generator.grid_priors(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) bboxes_list = [[] for _ in range(num_imgs)] for lvl in range(num_levels): bbox_pred = bbox_preds[lvl] angle_pred = angle_preds[lvl] bbox_pred = bbox_pred.permute(0, 2, 3, 1) bbox_pred = bbox_pred.reshape(num_imgs, -1, 4) angle_pred = angle_pred.permute(0, 2, 3, 1) angle_pred = angle_pred.reshape(num_imgs, -1, self.coding_len) angle_pred = self.angle_coder.decode(angle_pred) bbox_pred = torch.cat([bbox_pred, angle_pred], dim=-1) points = mlvl_points[lvl] for img_id in range(num_imgs): bbox_pred_i = bbox_pred[img_id] decode_bbox_i = self.bbox_coder.decode(points, bbox_pred_i) bboxes_list[img_id].append(decode_bbox_i.detach()) return bboxes_list
Read the Docs v: v0.3.2
Versions
latest
stable
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.1
v0.1.0
main
dev
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.