Shortcuts

Source code for mmrotate.models.dense_heads.rotated_fcos_head

# Copyright (c) OpenMMLab. All rights reserved.

import torch
import torch.nn as nn
from mmcv.cnn import Scale
from mmcv.runner import force_fp32
from mmdet.core import multi_apply, reduce_mean

from mmrotate.core import build_bbox_coder, multiclass_nms_rotated
from ..builder import ROTATED_HEADS, build_loss
from .rotated_anchor_free_head import RotatedAnchorFreeHead

INF = 1e8


[docs]@ROTATED_HEADS.register_module() class RotatedFCOSHead(RotatedAnchorFreeHead): """Anchor-free head used in `FCOS <https://arxiv.org/abs/1904.01355>`_. The FCOS head does not use anchor boxes. Instead bounding boxes are predicted at each pixel and a centerness measure is used to suppress low-quality predictions. Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training tricks used in official repo, which will bring remarkable mAP gains of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for more detail. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. strides (list[int] | list[tuple[int, int]]): Strides of points in multiple feature levels. Default: (4, 8, 16, 32, 64). regress_ranges (tuple[tuple[int, int]]): Regress range of multiple level points. center_sampling (bool): If true, use center sampling. Default: False. center_sample_radius (float): Radius of center sampling. Default: 1.5. norm_on_bbox (bool): If true, normalize the regression targets with FPN strides. Default: False. centerness_on_reg (bool): If true, position centerness on the regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042. Default: False. separate_angle (bool): If true, angle prediction is separated from bbox regression loss. Default: False. scale_angle (bool): If true, add scale to angle pred branch. Default: True. h_bbox_coder (dict): Config of horzional bbox coder, only used when separate_angle is True. conv_bias (bool | str): If specified as `auto`, it will be decided by the norm_cfg. Bias of conv will be set as True if `norm_cfg` is None, otherwise False. Default: "auto". loss_cls (dict): Config of classification loss. loss_bbox (dict): Config of localization loss. loss_angle (dict): Config of angle loss, only used when separate_angle is True. loss_centerness (dict): Config of centerness loss. norm_cfg (dict): dictionary to construct and config norm layer. Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True). init_cfg (dict or list[dict], optional): Initialization config dict. Example: >>> self = RotatedFCOSHead(11, 7) >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] >>> cls_score, bbox_pred, angle_pred, centerness = self.forward(feats) >>> assert len(cls_score) == len(self.scales) """ # noqa: E501 def __init__(self, num_classes, in_channels, regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), (512, INF)), center_sampling=False, center_sample_radius=1.5, norm_on_bbox=False, centerness_on_reg=False, separate_angle=False, scale_angle=True, h_bbox_coder=dict(type='DistancePointBBoxCoder'), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_angle=dict(type='L1Loss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), init_cfg=dict( type='Normal', layer='Conv2d', std=0.01, override=dict( type='Normal', name='conv_cls', std=0.01, bias_prob=0.01)), **kwargs): self.regress_ranges = regress_ranges self.center_sampling = center_sampling self.center_sample_radius = center_sample_radius self.norm_on_bbox = norm_on_bbox self.centerness_on_reg = centerness_on_reg self.separate_angle = separate_angle self.is_scale_angle = scale_angle super().__init__( num_classes, in_channels, loss_cls=loss_cls, loss_bbox=loss_bbox, norm_cfg=norm_cfg, init_cfg=init_cfg, **kwargs) self.loss_centerness = build_loss(loss_centerness) if self.separate_angle: self.loss_angle = build_loss(loss_angle) self.h_bbox_coder = build_bbox_coder(h_bbox_coder) # Angle predict length def _init_layers(self): """Initialize layers of the head.""" super()._init_layers() self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) self.conv_angle = nn.Conv2d(self.feat_channels, 1, 3, padding=1) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) if self.is_scale_angle: self.scale_angle = Scale(1.0)
[docs] def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: cls_scores (list[Tensor]): Box scores for each scale level, \ each is a 4D-tensor, the channel number is \ num_points * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each \ scale level, each is a 4D-tensor, the channel number is \ num_points * 4. angle_preds (list[Tensor]): Box angle for each scale level, \ each is a 4D-tensor, the channel number is num_points * 1. centernesses (list[Tensor]): centerness for each scale level, \ each is a 4D-tensor, the channel number is num_points * 1. """ return multi_apply(self.forward_single, feats, self.scales, self.strides)
[docs] def forward_single(self, x, scale, stride): """Forward features of a single scale level. Args: x (Tensor): FPN feature maps of the specified stride. scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize the bbox prediction. stride (int): The corresponding stride for feature maps, only used to normalize the bbox prediction when self.norm_on_bbox is True. Returns: tuple: scores for each class, bbox predictions, angle predictions \ and centerness predictions of input feature maps. """ cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x) if self.centerness_on_reg: centerness = self.conv_centerness(reg_feat) else: centerness = self.conv_centerness(cls_feat) # scale the bbox_pred of different level # float to avoid overflow when enabling FP16 bbox_pred = scale(bbox_pred).float() if self.norm_on_bbox: # bbox_pred needed for gradient computation has been modified # by F.relu(bbox_pred) when run with PyTorch 1.10. So replace # F.relu(bbox_pred) with bbox_pred.clamp(min=0) bbox_pred = bbox_pred.clamp(min=0) if not self.training: bbox_pred *= stride else: bbox_pred = bbox_pred.exp() angle_pred = self.conv_angle(reg_feat) if self.is_scale_angle: angle_pred = self.scale_angle(angle_pred).float() return cls_score, bbox_pred, angle_pred, centerness
[docs] @force_fp32( apply_to=('cls_scores', 'bbox_preds', 'angle_preds', 'centernesses')) def loss(self, cls_scores, bbox_preds, angle_preds, centernesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute loss of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4. angle_preds (list[Tensor]): Box angle for each scale level, \ each is a 4D-tensor, the channel number is num_points * 1. centernesses (list[Tensor]): centerness for each scale level, each is a 4D-tensor, the channel number is num_points * 1. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert len(cls_scores) == len(bbox_preds) \ == len(angle_preds) == len(centernesses) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] all_level_points = self.prior_generator.grid_priors( featmap_sizes, dtype=bbox_preds[0].dtype, device=bbox_preds[0].device) labels, bbox_targets, angle_targets = self.get_targets( all_level_points, gt_bboxes, gt_labels) num_imgs = cls_scores[0].size(0) # flatten cls_scores, bbox_preds and centerness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) for bbox_pred in bbox_preds ] flatten_angle_preds = [ angle_pred.permute(0, 2, 3, 1).reshape(-1, 1) for angle_pred in angle_preds ] flatten_centerness = [ centerness.permute(0, 2, 3, 1).reshape(-1) for centerness in centernesses ] flatten_cls_scores = torch.cat(flatten_cls_scores) flatten_bbox_preds = torch.cat(flatten_bbox_preds) flatten_angle_preds = torch.cat(flatten_angle_preds) flatten_centerness = torch.cat(flatten_centerness) flatten_labels = torch.cat(labels) flatten_bbox_targets = torch.cat(bbox_targets) flatten_angle_targets = torch.cat(angle_targets) # repeat points to align with bbox_preds flatten_points = torch.cat( [points.repeat(num_imgs, 1) for points in all_level_points]) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes bg_class_ind = self.num_classes pos_inds = ((flatten_labels >= 0) & (flatten_labels < bg_class_ind)).nonzero().reshape(-1) num_pos = torch.tensor( len(pos_inds), dtype=torch.float, device=bbox_preds[0].device) num_pos = max(reduce_mean(num_pos), 1.0) loss_cls = self.loss_cls( flatten_cls_scores, flatten_labels, avg_factor=num_pos) pos_bbox_preds = flatten_bbox_preds[pos_inds] pos_angle_preds = flatten_angle_preds[pos_inds] pos_centerness = flatten_centerness[pos_inds] pos_bbox_targets = flatten_bbox_targets[pos_inds] pos_angle_targets = flatten_angle_targets[pos_inds] pos_centerness_targets = self.centerness_target(pos_bbox_targets) # centerness weighted iou loss centerness_denorm = max( reduce_mean(pos_centerness_targets.sum().detach()), 1e-6) if len(pos_inds) > 0: pos_points = flatten_points[pos_inds] if self.separate_angle: bbox_coder = self.h_bbox_coder else: bbox_coder = self.bbox_coder pos_bbox_preds = torch.cat([pos_bbox_preds, pos_angle_preds], dim=-1) pos_bbox_targets = torch.cat( [pos_bbox_targets, pos_angle_targets], dim=-1) pos_decoded_bbox_preds = bbox_coder.decode(pos_points, pos_bbox_preds) pos_decoded_target_preds = bbox_coder.decode( pos_points, pos_bbox_targets) loss_bbox = self.loss_bbox( pos_decoded_bbox_preds, pos_decoded_target_preds, weight=pos_centerness_targets, avg_factor=centerness_denorm) if self.separate_angle: loss_angle = self.loss_angle( pos_angle_preds, pos_angle_targets, avg_factor=num_pos) loss_centerness = self.loss_centerness( pos_centerness, pos_centerness_targets, avg_factor=num_pos) else: loss_bbox = pos_bbox_preds.sum() loss_centerness = pos_centerness.sum() if self.separate_angle: loss_angle = pos_angle_preds.sum() if self.separate_angle: return dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_angle=loss_angle, loss_centerness=loss_centerness) else: return dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_centerness=loss_centerness)
[docs] def get_targets(self, points, gt_bboxes_list, gt_labels_list): """Compute regression, classification and centerness targets for points in multiple images. Args: points (list[Tensor]): Points of each fpn level, each has shape (num_points, 2). gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, each has shape (num_gt, 4). gt_labels_list (list[Tensor]): Ground truth labels of each box, each has shape (num_gt,). Returns: tuple: concat_lvl_labels (list[Tensor]): Labels of each level. \ concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \ level. concat_lvl_angle_targets (list[Tensor]): Angle targets of \ each level. """ assert len(points) == len(self.regress_ranges) num_levels = len(points) # expand regress ranges to align with points expanded_regress_ranges = [ points[i].new_tensor(self.regress_ranges[i])[None].expand_as( points[i]) for i in range(num_levels) ] # concat all levels points and regress ranges concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) concat_points = torch.cat(points, dim=0) # the number of points per img, per lvl num_points = [center.size(0) for center in points] # get labels and bbox_targets of each image labels_list, bbox_targets_list, angle_targets_list = multi_apply( self._get_target_single, gt_bboxes_list, gt_labels_list, points=concat_points, regress_ranges=concat_regress_ranges, num_points_per_lvl=num_points) # split to per img, per level labels_list = [labels.split(num_points, 0) for labels in labels_list] bbox_targets_list = [ bbox_targets.split(num_points, 0) for bbox_targets in bbox_targets_list ] angle_targets_list = [ angle_targets.split(num_points, 0) for angle_targets in angle_targets_list ] # concat per level image concat_lvl_labels = [] concat_lvl_bbox_targets = [] concat_lvl_angle_targets = [] for i in range(num_levels): concat_lvl_labels.append( torch.cat([labels[i] for labels in labels_list])) bbox_targets = torch.cat( [bbox_targets[i] for bbox_targets in bbox_targets_list]) angle_targets = torch.cat( [angle_targets[i] for angle_targets in angle_targets_list]) if self.norm_on_bbox: bbox_targets = bbox_targets / self.strides[i] concat_lvl_bbox_targets.append(bbox_targets) concat_lvl_angle_targets.append(angle_targets) return (concat_lvl_labels, concat_lvl_bbox_targets, concat_lvl_angle_targets)
def _get_target_single(self, gt_bboxes, gt_labels, points, regress_ranges, num_points_per_lvl): """Compute regression, classification and angle targets for a single image.""" num_points = points.size(0) num_gts = gt_labels.size(0) if num_gts == 0: return gt_labels.new_full((num_points,), self.num_classes), \ gt_bboxes.new_zeros((num_points, 4)), \ gt_bboxes.new_zeros((num_points, 1)) areas = gt_bboxes[:, 2] * gt_bboxes[:, 3] # TODO: figure out why these two are different # areas = areas[None].expand(num_points, num_gts) areas = areas[None].repeat(num_points, 1) regress_ranges = regress_ranges[:, None, :].expand( num_points, num_gts, 2) points = points[:, None, :].expand(num_points, num_gts, 2) gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 5) gt_ctr, gt_wh, gt_angle = torch.split(gt_bboxes, [2, 2, 1], dim=2) cos_angle, sin_angle = torch.cos(gt_angle), torch.sin(gt_angle) rot_matrix = torch.cat([cos_angle, sin_angle, -sin_angle, cos_angle], dim=-1).reshape(num_points, num_gts, 2, 2) offset = points - gt_ctr offset = torch.matmul(rot_matrix, offset[..., None]) offset = offset.squeeze(-1) w, h = gt_wh[..., 0], gt_wh[..., 1] offset_x, offset_y = offset[..., 0], offset[..., 1] left = w / 2 + offset_x right = w / 2 - offset_x top = h / 2 + offset_y bottom = h / 2 - offset_y bbox_targets = torch.stack((left, top, right, bottom), -1) # condition1: inside a gt bbox inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0 if self.center_sampling: # condition1: inside a `center bbox` radius = self.center_sample_radius stride = offset.new_zeros(offset.shape) # project the points on current lvl back to the `original` sizes lvl_begin = 0 for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl): lvl_end = lvl_begin + num_points_lvl stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius lvl_begin = lvl_end inside_center_bbox_mask = (abs(offset) < stride).all(dim=-1) inside_gt_bbox_mask = torch.logical_and(inside_center_bbox_mask, inside_gt_bbox_mask) # condition2: limit the regression range for each location max_regress_distance = bbox_targets.max(-1)[0] inside_regress_range = ( (max_regress_distance >= regress_ranges[..., 0]) & (max_regress_distance <= regress_ranges[..., 1])) # if there are still more than one objects for a location, # we choose the one with minimal area areas[inside_gt_bbox_mask == 0] = INF areas[inside_regress_range == 0] = INF min_area, min_area_inds = areas.min(dim=1) labels = gt_labels[min_area_inds] labels[min_area == INF] = self.num_classes # set as BG bbox_targets = bbox_targets[range(num_points), min_area_inds] angle_targets = gt_angle[range(num_points), min_area_inds] return labels, bbox_targets, angle_targets
[docs] def centerness_target(self, pos_bbox_targets): """Compute centerness targets. Args: pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape (num_pos, 4) Returns: Tensor: Centerness target. """ # only calculate pos centerness targets, otherwise there may be nan left_right = pos_bbox_targets[:, [0, 2]] top_bottom = pos_bbox_targets[:, [1, 3]] if len(left_right) == 0: centerness_targets = left_right[..., 0] else: centerness_targets = ( left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]) return torch.sqrt(centerness_targets)
[docs] @force_fp32( apply_to=('cls_scores', 'bbox_preds', 'angle_preds', 'centernesses')) def get_bboxes(self, cls_scores, bbox_preds, angle_preds, centernesses, img_metas, cfg=None, rescale=None): """Transform network output for a batch into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_points * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_points * 4, H, W) angle_preds (list[Tensor]): Box angle for each scale level \ with shape (N, num_points * 1, H, W) centernesses (list[Tensor]): Centerness for each scale level with shape (N, num_points * 1, H, W) img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used rescale (bool): If True, return boxes in original image space Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is an (n, 6) tensor, where the first 5 columns are bounding box positions (x, y, w, h, angle) and the 6-th column is a score between 0 and 1. The second item is a (n,) tensor where each item is the predicted class label of the corresponding box. """ assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_points = self.prior_generator.grid_priors(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) result_list = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] angle_pred_list = [ angle_preds[i][img_id].detach() for i in range(num_levels) ] centerness_pred_list = [ centernesses[i][img_id].detach() for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] det_bboxes = self._get_bboxes_single(cls_score_list, bbox_pred_list, angle_pred_list, centerness_pred_list, mlvl_points, img_shape, scale_factor, cfg, rescale) result_list.append(det_bboxes) return result_list
def _get_bboxes_single(self, cls_scores, bbox_preds, angle_preds, centernesses, mlvl_points, img_shape, scale_factor, cfg, rescale=False): """Transform outputs for a single batch item into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for a single scale level Has shape (num_points * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for a single scale level with shape (num_points * 4, H, W). angle_preds (list[Tensor]): Box angle for a single scale level \ with shape (N, num_points * 1, H, W). centernesses (list[Tensor]): Centerness for a single scale level with shape (num_points * 1, H, W). mlvl_points (list[Tensor]): Box reference for a single scale level with shape (num_total_points, 4). img_shape (tuple[int]): Shape of the input image, (height, width, 3). scale_factor (ndarray): Scale factor of the image arrange as (w_scale, h_scale, w_scale, h_scale). cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Returns: Tensor: Labeled boxes in shape (n, 6), where the first 5 columns are bounding box positions (x, y, w, h, angle) and the 6-th column is a score between 0 and 1. """ cfg = self.test_cfg if cfg is None else cfg assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) mlvl_bboxes = [] mlvl_scores = [] mlvl_centerness = [] for cls_score, bbox_pred, angle_pred, centerness, points in zip( cls_scores, bbox_preds, angle_preds, centernesses, mlvl_points): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(1, 2, 0).reshape( -1, self.cls_out_channels).sigmoid() centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid() bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) angle_pred = angle_pred.permute(1, 2, 0).reshape(-1, 1) bbox_pred = torch.cat([bbox_pred, angle_pred], dim=1) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: max_scores, _ = (scores * centerness[:, None]).max(dim=1) _, topk_inds = max_scores.topk(nms_pre) points = points[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] centerness = centerness[topk_inds] bboxes = self.bbox_coder.decode( points, bbox_pred, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_centerness.append(centerness) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: scale_factor = mlvl_bboxes.new_tensor(scale_factor) mlvl_bboxes[..., :4] = mlvl_bboxes[..., :4] / scale_factor mlvl_scores = torch.cat(mlvl_scores) padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) mlvl_centerness = torch.cat(mlvl_centerness) det_bboxes, det_labels = multiclass_nms_rotated( mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img, score_factors=mlvl_centerness) return det_bboxes, det_labels
[docs] @force_fp32( apply_to=('cls_scores', 'bbox_preds', 'angle_preds', 'centerness')) def refine_bboxes(self, cls_scores, bbox_preds, angle_preds, centernesses): """This function will be used in S2ANet, whose num_anchors=1.""" num_levels = len(cls_scores) assert num_levels == len(bbox_preds) num_imgs = cls_scores[0].size(0) for i in range(num_levels): assert num_imgs == cls_scores[i].size(0) == bbox_preds[i].size(0) # device = cls_scores[0].device featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_points = self.prior_generator.grid_priors(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) bboxes_list = [[] for _ in range(num_imgs)] for lvl in range(num_levels): bbox_pred = bbox_preds[lvl] angle_pred = angle_preds[lvl] bbox_pred = bbox_pred.permute(0, 2, 3, 1) bbox_pred = bbox_pred.reshape(num_imgs, -1, 4) angle_pred = angle_pred.permute(0, 2, 3, 1) angle_pred = angle_pred.reshape(num_imgs, -1, 1) bbox_pred = torch.cat([bbox_pred, angle_pred], dim=-1) points = mlvl_points[lvl] for img_id in range(num_imgs): bbox_pred_i = bbox_pred[img_id] decode_bbox_i = self.bbox_coder.decode(points, bbox_pred_i) bboxes_list[img_id].append(decode_bbox_i.detach()) return bboxes_list
Read the Docs v: v0.3.2
Versions
latest
stable
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.1
v0.1.0
main
dev
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.