Shortcuts

Source code for mmrotate.models.dense_heads.rotated_rpn_head

# Copyright (c) OpenMMLab. All rights reserved.
import copy

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.ops import batched_nms
from mmcv.runner import force_fp32
from mmdet.core import (anchor_inside_flags, images_to_levels, multi_apply,
                        unmap)
from mmdet.models.dense_heads.anchor_head import AnchorHead

from mmrotate.core import obb2xyxy
from ..builder import ROTATED_HEADS


[docs]@ROTATED_HEADS.register_module() class RotatedRPNHead(AnchorHead): """Rotated RPN head for rotated bboxes. Args: in_channels (int): Number of channels in the input feature map. init_cfg (dict or list[dict], optional): Initialization config dict. """ # noqa: W605 def __init__(self, in_channels, init_cfg=dict(type='Normal', layer='Conv2d', std=0.01), version='oc', **kwargs): self.version = version super(RotatedRPNHead, self).__init__( 1, in_channels, init_cfg=init_cfg, **kwargs) def _init_layers(self): """Initialize layers of the head.""" self.rpn_conv = nn.Conv2d( self.in_channels, self.feat_channels, 3, padding=1) self.rpn_cls = nn.Conv2d(self.feat_channels, self.num_anchors * self.cls_out_channels, 1) self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1)
[docs] def forward_single(self, x): """Forward feature map of a single scale level.""" x = self.rpn_conv(x) x = F.relu(x, inplace=True) rpn_cls_score = self.rpn_cls(x) rpn_bbox_pred = self.rpn_reg(x) return rpn_cls_score, rpn_bbox_pred
def _get_targets_single(self, flat_anchors, valid_flags, gt_bboxes, gt_bboxes_ignore, gt_labels, img_meta, label_channels=1, unmap_outputs=True): """Compute regression and classification targets for anchors in a single image. Args: flat_anchors (torch.Tensor): Multi-level anchors of the image, which are concatenated into a single tensor of shape (num_anchors ,4) valid_flags (torch.Tensor): Multi level valid flags of the image, which are concatenated into a single tensor of shape (num_anchors,). gt_bboxes (torch.Tensor): Ground truth bboxes of the image, shape (num_gts, 4). gt_bboxes_ignore (torch.Tensor): Ground truth bboxes to be ignored, shape (num_ignored_gts, 4). img_meta (dict): Meta info of the image. gt_labels (torch.Tensor): Ground truth labels of each box, shape (num_gts,). label_channels (int): Channel of label. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple: labels_list (list[Tensor]): Labels of each level label_weights_list (list[Tensor]): Label weights of each level bbox_targets_list (list[Tensor]): BBox targets of each level bbox_weights_list (list[Tensor]): BBox weights of each level num_total_pos (int): Number of positive samples in all images num_total_neg (int): Number of negative samples in all images """ inside_flags = anchor_inside_flags(flat_anchors, valid_flags, img_meta['img_shape'][:2], self.train_cfg.allowed_border) if not inside_flags.any(): return (None, ) * 7 # assign gt and sample anchors anchors = flat_anchors[inside_flags, :] gt_hbboxes = obb2xyxy(gt_bboxes, self.version) assign_result = self.assigner.assign( anchors, gt_hbboxes, gt_bboxes_ignore, None if self.sampling else gt_labels) sampling_result = self.sampler.sample(assign_result, anchors, gt_hbboxes) num_valid_anchors = anchors.shape[0] bbox_targets = torch.zeros_like(anchors) bbox_weights = torch.zeros_like(anchors) labels = anchors.new_full((num_valid_anchors, ), self.num_classes, dtype=torch.long) label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: if not self.reg_decoded_bbox: pos_bbox_targets = self.bbox_coder.encode( sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) else: pos_bbox_targets = sampling_result.pos_gt_bboxes bbox_targets[pos_inds, :] = pos_bbox_targets bbox_weights[pos_inds, :] = 1.0 if gt_labels is None: # Only rpn gives gt_labels as None # Foreground is the first class since v2.5.0 labels[pos_inds] = 0 else: labels[pos_inds] = gt_labels[ sampling_result.pos_assigned_gt_inds] if self.train_cfg.pos_weight <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = self.train_cfg.pos_weight if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 # map up to original set of anchors if unmap_outputs: num_total_anchors = flat_anchors.size(0) labels = unmap( labels, num_total_anchors, inside_flags, fill=self.num_classes) # fill bg label label_weights = unmap(label_weights, num_total_anchors, inside_flags) bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, neg_inds, sampling_result)
[docs] def get_targets(self, anchor_list, valid_flag_list, gt_bboxes_list, img_metas, gt_bboxes_ignore_list=None, gt_labels_list=None, label_channels=1, unmap_outputs=True, return_sampling_results=False): """Compute regression and classification targets for anchors in multiple images. Args: anchor_list (list[list[Tensor]]): Multi level anchors of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, 4). valid_flag_list (list[list[Tensor]]): Multi level valid flags of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, ) gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. img_metas (list[dict]): Meta info of each image. gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be ignored. gt_labels_list (list[Tensor]): Ground truth labels of each box. label_channels (int): Channel of label. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple: Usually returns a tuple containing learning targets. - labels_list (list[Tensor]): Labels of each level. - label_weights_list (list[Tensor]): Label weights of each \ level. - bbox_targets_list (list[Tensor]): BBox targets of each level. - bbox_weights_list (list[Tensor]): BBox weights of each level. - num_total_pos (int): Number of positive samples in all \ images. - num_total_neg (int): Number of negative samples in all \ images. additional_returns: This function enables user-defined returns from `self._get_targets_single`. These returns are currently refined to properties at each feature map (i.e. having HxW dimension). The results will be concatenated after the end """ num_imgs = len(img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] # concat all level anchors to a single tensor concat_anchor_list = [] concat_valid_flag_list = [] for i in range(num_imgs): assert len(anchor_list[i]) == len(valid_flag_list[i]) concat_anchor_list.append(torch.cat(anchor_list[i])) concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) # compute targets for each image if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] if gt_labels_list is None: gt_labels_list = [None for _ in range(num_imgs)] results = multi_apply( self._get_targets_single, concat_anchor_list, concat_valid_flag_list, gt_bboxes_list, gt_bboxes_ignore_list, gt_labels_list, img_metas, label_channels=label_channels, unmap_outputs=unmap_outputs) (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, pos_inds_list, neg_inds_list, sampling_results_list) = results[:7] rest_results = list(results[7:]) # user-added return values # no valid anchors if any([labels is None for labels in all_labels]): return None # sampled anchors of all images num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) # split targets to a list w.r.t. multiple levels labels_list = images_to_levels(all_labels, num_level_anchors) label_weights_list = images_to_levels(all_label_weights, num_level_anchors) bbox_targets_list = images_to_levels(all_bbox_targets, num_level_anchors) bbox_weights_list = images_to_levels(all_bbox_weights, num_level_anchors) res = (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) if return_sampling_results: res = res + (sampling_results_list, ) for i, r in enumerate(rest_results): # user-added return values rest_results[i] = images_to_levels(r, num_level_anchors) return res + tuple(rest_results)
[docs] def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights, bbox_targets, bbox_weights, num_total_samples): """Compute loss of a single scale level. Args: cls_score (torch.Tensor): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W). bbox_pred (torch.Tensor): Box energies / deltas for each scale level with shape (N, num_anchors * 5, H, W). anchors (torch.Tensor): Box reference for each scale level with shape (N, num_total_anchors, 4). labels (torch.Tensor): Labels of each anchors with shape (N, num_total_anchors). label_weights (torch.Tensor): Label weights of each anchor with shape (N, num_total_anchors) bbox_targets (torch.Tensor): BBox regression targets of each anchor weight shape (N, num_total_anchors, 5). bbox_weights (torch.Tensor): BBox regression loss weights of each anchor with shape (N, num_total_anchors, 4). num_total_samples (int): If sampling, num total samples equal to the number of total anchors; Otherwise, it is the number of positive anchors. Returns: dict[str, Tensor]: A dictionary of loss components. """ # classification loss labels = labels.reshape(-1) label_weights = label_weights.reshape(-1) cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) loss_cls = self.loss_cls( cls_score, labels, label_weights, avg_factor=num_total_samples) # regression loss bbox_targets = bbox_targets.reshape(-1, 4) bbox_weights = bbox_weights.reshape(-1, 4) bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) if self.reg_decoded_bbox: # When the regression loss (e.g. `IouLoss`, `GIouLoss`) # is applied directly on the decoded bounding boxes, it # decodes the already encoded coordinates to absolute format. anchors = anchors.reshape(-1, 4) bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) loss_bbox = self.loss_bbox( bbox_pred, bbox_targets, bbox_weights, avg_factor=num_total_samples) return loss_cls, loss_bbox
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def loss(self, cls_scores, bbox_preds, gt_bboxes, img_metas, gt_bboxes_ignore=None): """Compute losses of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 5, H, W) gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 5) in [cx, cy, w, h, a] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Default: None Returns: dict[str, Tensor]: A dictionary of loss components. """ featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.anchor_generator.num_levels device = cls_scores[0].device anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, img_metas, device=device) label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=None, label_channels=label_channels) if cls_reg_targets is None: return None (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets num_total_samples = ( num_total_pos + num_total_neg if self.sampling else num_total_pos) # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] # concat all level anchors and flags to a single tensor concat_anchor_list = [] for i, _ in enumerate(anchor_list): concat_anchor_list.append(torch.cat(anchor_list[i])) all_anchor_list = images_to_levels(concat_anchor_list, num_level_anchors) losses_cls, losses_bbox = multi_apply( self.loss_single, cls_scores, bbox_preds, all_anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_samples=num_total_samples) return dict(loss_rpn_cls=losses_cls, loss_rpn_bbox=losses_bbox)
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def get_bboxes(self, cls_scores, bbox_preds, img_metas, cfg=None, rescale=False, with_nms=True): """Transform network output for a batch into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 5, H, W) img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. cfg (mmcv.Config | None): Test / postprocessing configuration, if None, test_cfg would be used rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before return boxes. Default: True. Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is an (n, 6) tensor, where the first 5 columns are bounding box positions (cx, cy, w, h, a) and the 6-th column is a score between 0 and 1. The second item is a (n,) tensor where each item is the predicted class label of the corresponding box. """ assert with_nms, '``with_nms`` in RPNHead should always True' assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) device = cls_scores[0].device featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_anchors = self.anchor_generator.grid_priors( featmap_sizes, device=device) result_list = [] for img_id, _ in enumerate(img_metas): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, mlvl_anchors, img_shape, scale_factor, cfg, rescale) result_list.append(proposals) return result_list
def _get_bboxes_single(self, cls_scores, bbox_preds, mlvl_anchors, img_shape, scale_factor, cfg, rescale=False): """Transform outputs for a single batch item into bbox predictions. Args: cls_scores (list[Tensor]): Box scores of all scale level each item has shape (num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas of all scale level, each item has shape (num_anchors * 4, H, W). mlvl_anchors (list[Tensor]): Anchors of all scale level each item has shape (num_total_anchors, 4). img_shape (tuple[int]): Shape of the input image, (height, width, 3). scale_factor (ndarray): Scale factor of the image arrange as (w_scale, h_scale, w_scale, h_scale). cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Default: False. Returns: Tensor: Labeled boxes in shape (n, 5), where the first 4 columns are bounding box positions (cx, cy, w, h, a) and the 6-th column is a score between 0 and 1. """ cfg = self.test_cfg if cfg is None else cfg cfg = copy.deepcopy(cfg) # bboxes from different level should be independent during NMS, # level_ids are used as labels for batched NMS to separate them level_ids = [] mlvl_scores = [] mlvl_bbox_preds = [] mlvl_valid_anchors = [] for idx, _ in enumerate(cls_scores): rpn_cls_score = cls_scores[idx] rpn_bbox_pred = bbox_preds[idx] assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:] rpn_cls_score = rpn_cls_score.permute(1, 2, 0) if self.use_sigmoid_cls: rpn_cls_score = rpn_cls_score.reshape(-1) scores = rpn_cls_score.sigmoid() else: rpn_cls_score = rpn_cls_score.reshape(-1, 2) # We set FG labels to [0, num_class-1] and BG label to # num_class in RPN head since mmdet v2.5, which is unified to # be consistent with other head since mmdet v2.0. In mmdet v2.0 # to v2.4 we keep BG label as 0 and FG label as 1 in rpn head. scores = rpn_cls_score.softmax(dim=1)[:, 0] rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4) anchors = mlvl_anchors[idx] if cfg.nms_pre > 0 and scores.shape[0] > cfg.nms_pre: # sort is faster than topk # _, topk_inds = scores.topk(cfg.nms_pre) ranked_scores, rank_inds = scores.sort(descending=True) topk_inds = rank_inds[:cfg.nms_pre] scores = ranked_scores[:cfg.nms_pre] rpn_bbox_pred = rpn_bbox_pred[topk_inds, :] anchors = anchors[topk_inds, :] mlvl_scores.append(scores) mlvl_bbox_preds.append(rpn_bbox_pred) mlvl_valid_anchors.append(anchors) level_ids.append( scores.new_full((scores.size(0), ), idx, dtype=torch.long)) scores = torch.cat(mlvl_scores) anchors = torch.cat(mlvl_valid_anchors) rpn_bbox_pred = torch.cat(mlvl_bbox_preds) proposals = self.bbox_coder.decode( anchors, rpn_bbox_pred, max_shape=img_shape) ids = torch.cat(level_ids) if cfg.min_bbox_size > 0: w = proposals[:, 2] - proposals[:, 0] h = proposals[:, 3] - proposals[:, 1] valid_mask = (w >= cfg.min_bbox_size) & (h >= cfg.min_bbox_size) if not valid_mask.all(): proposals = proposals[valid_mask] scores = scores[valid_mask] ids = ids[valid_mask] if proposals.numel() > 0: dets, keep = batched_nms(proposals, scores, ids, cfg.nms) else: return proposals.new_zeros(0, 5) return dets[:cfg.max_per_img]
Read the Docs v: v0.3.2
Versions
latest
stable
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.1
v0.1.0
main
dev
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.