Shortcuts

Source code for mmrotate.models.dense_heads.rotated_anchor_head

# Copyright (c) OpenMMLab. All rights reserved.
from inspect import signature

import torch
import torch.nn as nn
from mmcv.runner import force_fp32
from mmdet.core import images_to_levels, multi_apply, unmap
from mmdet.models.dense_heads.base_dense_head import BaseDenseHead

from mmrotate.core import (aug_multiclass_nms_rotated, bbox_mapping_back,
                           build_assigner, build_bbox_coder,
                           build_prior_generator, build_sampler,
                           multiclass_nms_rotated, obb2hbb,
                           rotated_anchor_inside_flags)
from ..builder import ROTATED_HEADS, build_loss


[docs]@ROTATED_HEADS.register_module() class RotatedAnchorHead(BaseDenseHead): """Rotated Anchor-based head (RotatedRPN, RotatedRetinaNet, etc.). Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. feat_channels (int): Number of hidden channels. Used in child classes. anchor_generator (dict): Config dict for anchor generator bbox_coder (dict): Config of bounding box coder. reg_decoded_bbox (bool): If true, the regression loss would be applied on decoded bounding boxes. Default: False assign_by_circumhbbox (str): If None, assigner will assign according to the IoU between anchor and GT (OBB), called RetinaNet-OBB. If angle definition method, assigner will assign according to the IoU between anchor and GT's circumbox (HBB), called RetinaNet-HBB. loss_cls (dict): Config of classification loss. loss_bbox (dict): Config of localization loss. train_cfg (dict): Training config of anchor head. test_cfg (dict): Testing config of anchor head. init_cfg (dict or list[dict], optional): Initialization config dict. """ # noqa: W605 def __init__(self, num_classes, in_channels, feat_channels=256, anchor_generator=dict( type='RotatedAnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[1.0, 0.5, 2.0], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHAOBBoxCoder', target_means=(.0, .0, .0, .0, .0), target_stds=(1.0, 1.0, 1.0, 1.0, 1.0)), reg_decoded_bbox=False, assign_by_circumhbbox='oc', loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0), train_cfg=None, test_cfg=None, init_cfg=dict(type='Normal', layer='Conv2d', std=0.01)): super(RotatedAnchorHead, self).__init__(init_cfg) self.in_channels = in_channels self.num_classes = num_classes self.feat_channels = feat_channels self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) # TODO better way to determine whether sample or not self.sampling = loss_cls['type'] not in [ 'FocalLoss', 'GHMC', 'QualityFocalLoss' ] if self.use_sigmoid_cls: self.cls_out_channels = num_classes else: self.cls_out_channels = num_classes + 1 if self.cls_out_channels <= 0: raise ValueError(f'num_classes={num_classes} is too small') self.reg_decoded_bbox = reg_decoded_bbox self.assign_by_circumhbbox = assign_by_circumhbbox self.bbox_coder = build_bbox_coder(bbox_coder) self.loss_cls = build_loss(loss_cls) self.loss_bbox = build_loss(loss_bbox) self.train_cfg = train_cfg self.test_cfg = test_cfg if self.train_cfg: self.assigner = build_assigner(self.train_cfg.assigner) # use PseudoSampler when sampling is False if self.sampling and hasattr(self.train_cfg, 'sampler'): sampler_cfg = self.train_cfg.sampler else: sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) self.fp16_enabled = False self.anchor_generator = build_prior_generator(anchor_generator) # usually the numbers of anchors for each level are the same # except SSD detectors self.num_anchors = self.anchor_generator.num_base_anchors[0] self._init_layers() def _init_layers(self): """Initialize layers of the head.""" self.conv_cls = nn.Conv2d(self.in_channels, self.num_anchors * self.cls_out_channels, 1) self.conv_reg = nn.Conv2d(self.in_channels, self.num_anchors * 5, 1)
[docs] def forward_single(self, x): """Forward feature of a single scale level. Args: x (torch.Tensor): Features of a single scale level. Returns: tuple (torch.Tensor): - cls_score (torch.Tensor): Cls scores for a single scale \ level the channels number is num_anchors * num_classes. - bbox_pred (torch.Tensor): Box energies / deltas for a \ single scale level, the channels number is num_anchors * 5. """ cls_score = self.conv_cls(x) bbox_pred = self.conv_reg(x) return cls_score, bbox_pred
[docs] def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: A tuple of classification scores and bbox prediction. - cls_scores (list[Tensor]): Classification scores for all \ scale levels, each is a 4D-tensor, the channels number \ is num_anchors * num_classes. - bbox_preds (list[Tensor]): Box energies / deltas for all \ scale levels, each is a 4D-tensor, the channels number \ is num_anchors * 5. """ return multi_apply(self.forward_single, feats)
[docs] def get_anchors(self, featmap_sizes, img_metas, device='cuda'): """Get anchors according to feature map sizes. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. img_metas (list[dict]): Image meta info. device (torch.device | str): Device for returned tensors Returns: tuple (list[Tensor]): - anchor_list (list[Tensor]): Anchors of each image. - valid_flag_list (list[Tensor]): Valid flags of each image. """ num_imgs = len(img_metas) # since feature map sizes of all images are the same, we only compute # anchors for one time multi_level_anchors = self.anchor_generator.grid_priors( featmap_sizes, device) anchor_list = [multi_level_anchors for _ in range(num_imgs)] # for each image, we compute valid flags of multi level anchors valid_flag_list = [] for img_id, img_meta in enumerate(img_metas): multi_level_flags = self.anchor_generator.valid_flags( featmap_sizes, img_meta['pad_shape'], device) valid_flag_list.append(multi_level_flags) return anchor_list, valid_flag_list
def _get_targets_single(self, flat_anchors, valid_flags, gt_bboxes, gt_bboxes_ignore, gt_labels, img_meta, label_channels=1, unmap_outputs=True): """Compute regression and classification targets for anchors in a single image. Args: flat_anchors (torch.Tensor): Multi-level anchors of the image, which are concatenated into a single tensor of shape (num_anchors, 5) valid_flags (torch.Tensor): Multi level valid flags of the image, which are concatenated into a single tensor of shape (num_anchors,). gt_bboxes (torch.Tensor): Ground truth bboxes of the image, shape (num_gts, 5). img_meta (dict): Meta info of the image. gt_bboxes_ignore (torch.Tensor): Ground truth bboxes to be ignored, shape (num_ignored_gts, 5). img_meta (dict): Meta info of the image. gt_labels (torch.Tensor): Ground truth labels of each box, shape (num_gts,). label_channels (int): Channel of label. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple (list[Tensor]): - labels_list (list[Tensor]): Labels of each level - label_weights_list (list[Tensor]): Label weights of each \ level - bbox_targets_list (list[Tensor]): BBox targets of each level - bbox_weights_list (list[Tensor]): BBox weights of each level - num_total_pos (int): Number of positive samples in all images - num_total_neg (int): Number of negative samples in all images """ inside_flags = rotated_anchor_inside_flags( flat_anchors, valid_flags, img_meta['img_shape'][:2], self.train_cfg.allowed_border) if not inside_flags.any(): return (None, ) * 7 # assign gt and sample anchors anchors = flat_anchors[inside_flags, :] if self.assign_by_circumhbbox is not None: gt_bboxes_assign = obb2hbb(gt_bboxes, self.assign_by_circumhbbox) assign_result = self.assigner.assign( anchors, gt_bboxes_assign, gt_bboxes_ignore, None if self.sampling else gt_labels) else: assign_result = self.assigner.assign( anchors, gt_bboxes, gt_bboxes_ignore, None if self.sampling else gt_labels) sampling_result = self.sampler.sample(assign_result, anchors, gt_bboxes) num_valid_anchors = anchors.shape[0] bbox_targets = torch.zeros_like(anchors) bbox_weights = torch.zeros_like(anchors) labels = anchors.new_full((num_valid_anchors, ), self.num_classes, dtype=torch.long) label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: if not self.reg_decoded_bbox: pos_bbox_targets = self.bbox_coder.encode( sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) else: pos_bbox_targets = sampling_result.pos_gt_bboxes bbox_targets[pos_inds, :] = pos_bbox_targets bbox_weights[pos_inds, :] = 1.0 if gt_labels is None: # Only rpn gives gt_labels as None # Foreground is the first class since v2.5.0 labels[pos_inds] = 0 else: labels[pos_inds] = gt_labels[ sampling_result.pos_assigned_gt_inds] if self.train_cfg.pos_weight <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = self.train_cfg.pos_weight if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 # map up to original set of anchors if unmap_outputs: num_total_anchors = flat_anchors.size(0) labels = unmap( labels, num_total_anchors, inside_flags, fill=self.num_classes) # fill bg label label_weights = unmap(label_weights, num_total_anchors, inside_flags) bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, neg_inds, sampling_result)
[docs] def get_targets(self, anchor_list, valid_flag_list, gt_bboxes_list, img_metas, gt_bboxes_ignore_list=None, gt_labels_list=None, label_channels=1, unmap_outputs=True, return_sampling_results=False): """Compute regression and classification targets for anchors in multiple images. Args: anchor_list (list[list[Tensor]]): Multi level anchors of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, 5). valid_flag_list (list[list[Tensor]]): Multi level valid flags of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, ) gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. img_metas (list[dict]): Meta info of each image. gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be ignored. gt_labels_list (list[Tensor]): Ground truth labels of each box. label_channels (int): Channel of label. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple: Usually returns a tuple containing learning targets. - labels_list (list[Tensor]): Labels of each level. - label_weights_list (list[Tensor]): Label weights of each \ level. - bbox_targets_list (list[Tensor]): BBox targets of each level. - bbox_weights_list (list[Tensor]): BBox weights of each level. - num_total_pos (int): Number of positive samples in all \ images. - num_total_neg (int): Number of negative samples in all \ images. additional_returns: This function enables user-defined returns from `self._get_targets_single`. These returns are currently refined to properties at each feature map (i.e. having HxW dimension). The results will be concatenated after the end """ num_imgs = len(img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] # concat all level anchors to a single tensor concat_anchor_list = [] concat_valid_flag_list = [] for i in range(num_imgs): assert len(anchor_list[i]) == len(valid_flag_list[i]) concat_anchor_list.append(torch.cat(anchor_list[i])) concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) # compute targets for each image if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] if gt_labels_list is None: gt_labels_list = [None for _ in range(num_imgs)] results = multi_apply( self._get_targets_single, concat_anchor_list, concat_valid_flag_list, gt_bboxes_list, gt_bboxes_ignore_list, gt_labels_list, img_metas, label_channels=label_channels, unmap_outputs=unmap_outputs) (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, pos_inds_list, neg_inds_list, sampling_results_list) = results[:7] rest_results = list(results[7:]) # user-added return values # no valid anchors if any([labels is None for labels in all_labels]): return None # sampled anchors of all images num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) # split targets to a list w.r.t. multiple levels labels_list = images_to_levels(all_labels, num_level_anchors) label_weights_list = images_to_levels(all_label_weights, num_level_anchors) bbox_targets_list = images_to_levels(all_bbox_targets, num_level_anchors) bbox_weights_list = images_to_levels(all_bbox_weights, num_level_anchors) res = (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) if return_sampling_results: res = res + (sampling_results_list, ) for i, r in enumerate(rest_results): # user-added return values rest_results[i] = images_to_levels(r, num_level_anchors) return res + tuple(rest_results)
[docs] def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights, bbox_targets, bbox_weights, num_total_samples): """Compute loss of a single scale level. Args: cls_score (torch.Tensor): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W). bbox_pred (torch.Tensor): Box energies / deltas for each scale level with shape (N, num_anchors * 5, H, W). anchors (torch.Tensor): Box reference for each scale level with shape (N, num_total_anchors, 5). labels (torch.Tensor): Labels of each anchors with shape (N, num_total_anchors). label_weights (torch.Tensor): Label weights of each anchor with shape (N, num_total_anchors) bbox_targets (torch.Tensor): BBox regression targets of each anchor weight shape (N, num_total_anchors, 5). bbox_weights (torch.Tensor): BBox regression loss weights of each anchor with shape (N, num_total_anchors, 5). num_total_samples (int): If sampling, num total samples equal to the number of total anchors; Otherwise, it is the number of positive anchors. Returns: tuple (torch.Tensor): - loss_cls (torch.Tensor): cls. loss for each scale level. - loss_bbox (torch.Tensor): reg. loss for each scale level. """ # classification loss labels = labels.reshape(-1) label_weights = label_weights.reshape(-1) cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) loss_cls = self.loss_cls( cls_score, labels, label_weights, avg_factor=num_total_samples) # regression loss bbox_targets = bbox_targets.reshape(-1, 5) bbox_weights = bbox_weights.reshape(-1, 5) bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 5) if self.reg_decoded_bbox: anchors = anchors.reshape(-1, 5) bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) loss_bbox = self.loss_bbox( bbox_pred, bbox_targets, bbox_weights, avg_factor=num_total_samples) return loss_cls, loss_bbox
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def loss(self, cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute losses of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 5, H, W) gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 5) in [cx, cy, w, h, a] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Default: None Returns: dict[str, Tensor]: A dictionary of loss components. """ featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.anchor_generator.num_levels device = cls_scores[0].device anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, img_metas, device=device) label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, label_channels=label_channels) if cls_reg_targets is None: return None (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets num_total_samples = ( num_total_pos + num_total_neg if self.sampling else num_total_pos) # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] # concat all level anchors and flags to a single tensor concat_anchor_list = [] for i, _ in enumerate(anchor_list): concat_anchor_list.append(torch.cat(anchor_list[i])) all_anchor_list = images_to_levels(concat_anchor_list, num_level_anchors) losses_cls, losses_bbox = multi_apply( self.loss_single, cls_scores, bbox_preds, all_anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_samples=num_total_samples) return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def get_bboxes(self, cls_scores, bbox_preds, img_metas, cfg=None, rescale=False, with_nms=True): """Transform network output for a batch into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 5, H, W) img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. cfg (mmcv.Config | None): Test / postprocessing configuration, if None, test_cfg would be used rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before return boxes. Default: True. Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is an (n, 6) tensor, where the first 5 columns are bounding box positions (cx, cy, w, h, a) and the 6-th column is a score between 0 and 1. The second item is a (n,) tensor where each item is the predicted class label of the corresponding box. Example: >>> import mmcv >>> self = AnchorHead( >>> num_classes=9, >>> in_channels=1, >>> anchor_generator=dict( >>> type='AnchorGenerator', >>> scales=[8], >>> ratios=[0.5, 1.0, 2.0], >>> strides=[4,])) >>> img_metas = [{'img_shape': (32, 32, 3), 'scale_factor': 1}] >>> cfg = mmcv.Config(dict( >>> score_thr=0.00, >>> nms=dict(type='nms', iou_thr=1.0), >>> max_per_img=10)) >>> feat = torch.rand(1, 1, 3, 3) >>> cls_score, bbox_pred = self.forward_single(feat) >>> # note the input lists are over different levels, not images >>> cls_scores, bbox_preds = [cls_score], [bbox_pred] >>> result_list = self.get_bboxes(cls_scores, bbox_preds, >>> img_metas, cfg) >>> det_bboxes, det_labels = result_list[0] >>> assert len(result_list) == 1 >>> assert det_bboxes.shape[1] == 5 >>> assert len(det_bboxes) == len(det_labels) == cfg.max_per_img """ assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) device = cls_scores[0].device featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_anchors = self.anchor_generator.grid_priors( featmap_sizes, device=device) result_list = [] for img_id, _ in enumerate(img_metas): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] if with_nms: # some heads don't support with_nms argument proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, mlvl_anchors, img_shape, scale_factor, cfg, rescale) else: proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, mlvl_anchors, img_shape, scale_factor, cfg, rescale, with_nms) result_list.append(proposals) return result_list
def _get_bboxes_single(self, cls_score_list, bbox_pred_list, mlvl_anchors, img_shape, scale_factor, cfg, rescale=False, with_nms=True): """Transform outputs for a single batch item into bbox predictions. Args: cls_score_list (list[Tensor]): Box scores for a single scale level Has shape (num_anchors * num_classes, H, W). bbox_pred_list (list[Tensor]): Box energies / deltas for a single scale level with shape (num_anchors * 4, H, W). mlvl_anchors (list[Tensor]): Box reference for a single scale level with shape (num_total_anchors, 4). img_shape (tuple[int]): Shape of the input image, (height, width, 3). scale_factor (ndarray): Scale factor of the image arange as (w_scale, h_scale, w_scale, h_scale). cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before return boxes. Default: True. Returns: Tensor: Labeled boxes in shape (n, 5), where the first 4 columns are bounding box positions (cx, cy, w, h, a) and the 6-th column is a score between 0 and 1. """ cfg = self.test_cfg if cfg is None else cfg assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors) mlvl_bboxes = [] mlvl_scores = [] for cls_score, bbox_pred, anchors in zip(cls_score_list, bbox_pred_list, mlvl_anchors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] cls_score = cls_score.permute(1, 2, 0).reshape(-1, self.cls_out_channels) if self.use_sigmoid_cls: scores = cls_score.sigmoid() else: scores = cls_score.softmax(-1) bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 5) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: # Get maximum scores for foreground classes. if self.use_sigmoid_cls: max_scores, _ = scores.max(dim=1) else: # remind that we set FG labels to [0, num_class-1] # since mmdet v2.0 # BG cat_id: num_class max_scores, _ = scores[:, :-1].max(dim=1) _, topk_inds = max_scores.topk(nms_pre) anchors = anchors[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] bboxes = self.bbox_coder.decode( anchors, bbox_pred, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: # angle should not be rescaled mlvl_bboxes[:, :4] = mlvl_bboxes[:, :4] / mlvl_bboxes.new_tensor( scale_factor) mlvl_scores = torch.cat(mlvl_scores) if self.use_sigmoid_cls: # Add a dummy background class to the backend when using sigmoid # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) if with_nms: det_bboxes, det_labels = multiclass_nms_rotated( mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img) return det_bboxes, det_labels else: return mlvl_bboxes, mlvl_scores
[docs] def aug_test(self, feats, img_metas, rescale=False): """Test det bboxes with test time augmentation, can be applied in DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``, etc. Args: feats (list[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains features for all images in the batch. img_metas (list[list[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. each dict has image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is ``bboxes`` with shape (n, 6), where 6 represent (x, y, w, h, a, score). The shape of the second tensor in the tuple is ``labels`` with shape (n,). The length of list should always be 1. """ # check with_nms argument gb_sig = signature(self.get_bboxes) gb_args = [p.name for p in gb_sig.parameters.values()] gbs_sig = signature(self._get_bboxes_single) gbs_args = [p.name for p in gbs_sig.parameters.values()] assert ('with_nms' in gb_args) and ('with_nms' in gbs_args), \ f'{self.__class__.__name__}' \ ' does not support test-time augmentation' aug_bboxes = [] aug_scores = [] for x, img_meta in zip(feats, img_metas): # only one image in the batch outs = self.forward(x) bbox_outputs = self.get_bboxes( *outs, img_metas=img_meta, cfg=self.test_cfg, rescale=False, with_nms=False)[0] aug_bboxes.append(bbox_outputs[0]) aug_scores.append(bbox_outputs[1]) # after merging, bboxes will be rescaled to the original image size merged_bboxes, merged_scores = self.merge_aug_bboxes( aug_bboxes, aug_scores, img_metas) merged_scores, merged_labels = torch.max(merged_scores[:, :-1], dim=1) merged_bboxes = torch.cat([merged_bboxes, merged_scores[:, None]], -1) if merged_bboxes.numel() == 0: return [ (merged_bboxes, merged_labels), ] det_bboxes, det_labels = aug_multiclass_nms_rotated( merged_bboxes, merged_labels, self.test_cfg.score_thr, self.test_cfg.nms, self.test_cfg.max_per_img, self.num_classes) if rescale: # angle should not be rescaled merged_bboxes[:, :4] *= merged_bboxes.new_tensor( img_metas[0][0]['scale_factor']) return [ (det_bboxes, det_labels), ]
[docs] def merge_aug_bboxes(self, aug_bboxes, aug_scores, img_metas): """Merge augmented detection bboxes and scores. Args: aug_bboxes (list[Tensor]): shape (n, 4*#class) aug_scores (list[Tensor] or None): shape (n, #class) img_shapes (list[Tensor]): shape (3, ). Returns: tuple[Tensor]: ``bboxes`` with shape (n,4), where 4 represent (tl_x, tl_y, br_x, br_y) and ``scores`` with shape (n,). """ recovered_bboxes = [] for bboxes, img_info in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] flip_direction = img_info[0]['flip_direction'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip, flip_direction) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: return bboxes else: scores = torch.cat(aug_scores, dim=0) return bboxes, scores
Read the Docs v: v0.3.4
Versions
latest
stable
1.x
v1.0.0rc0
v0.3.4
v0.3.3
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.1
v0.1.0
main
dev
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.